login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162667 a(n) = 20*a(n-1) - 97*a(n-2) for n > 1; a(0) = 1, a(1) = 10. 1
1, 10, 103, 1090, 11809, 130450, 1463527, 16616890, 190375681, 2195675290, 25447064743, 295960791730, 3450850554529, 40308814292770, 471443782066087, 5518920654923050, 64648366238050561, 757632021233475370 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of A152056. Tenth binomial transform of powers of 3 interleaved with zeros.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..930

Index entries for linear recurrences with constant coefficients, signature (20,-97).

FORMULA

a(n) = ((10+sqrt(3))^n + (10-sqrt(3))^n)/2.

G.f.: (1-10*x)/(1-20*x+97*x^2).

MAPLE

seq(coeff(series((1-10*x)/(1-20*x+97*x^2), x, n+1), x, n), n = 0..20); # G. C. Greubel, Aug 27 2019

MATHEMATICA

LinearRecurrence[{20, -97}, {1, 10}, 20] (* G. C. Greubel, Aug 27 2019 *)

PROG

(Magma) [ n le 2 select 9*n-8 else 20*Self(n-1)-97*Self(n-2): n in [1..18] ];

(PARI) my(x='x+O('x^20)); Vec((1-10*x)/(1-20*x+97*x^2)) \\ G. C. Greubel, Aug 27 2019

(Sage)

def A162667_list(prec):

P.<x> = PowerSeriesRing(ZZ, prec)

return P((1-10*x)/(1-20*x+97*x^2)).list()

A162667_list(20) # G. C. Greubel, Aug 27 2019

(GAP) a:=[1, 10];; for n in [3..20] do a[n]:=20*a[n-1]-97*a[n-2]; od; a; # G. C. Greubel, Aug 27 2019

CROSSREFS

Cf. A152056, A000244 (powers of 3).

Sequence in context: A037596 A037687 A015588 * A227014 A036334 A190954

Adjacent sequences: A162664 A162665 A162666 * A162668 A162669 A162670

KEYWORD

nonn,easy

AUTHOR

Klaus Brockhaus, Jul 15 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 22:15 EDT 2023. Contains 361599 sequences. (Running on oeis4.)