|
|
A162667
|
|
a(n) = 20*a(n-1) - 97*a(n-2) for n > 1; a(0) = 1, a(1) = 10.
|
|
1
|
|
|
1, 10, 103, 1090, 11809, 130450, 1463527, 16616890, 190375681, 2195675290, 25447064743, 295960791730, 3450850554529, 40308814292770, 471443782066087, 5518920654923050, 64648366238050561, 757632021233475370
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Binomial transform of A152056. Tenth binomial transform of powers of 3 interleaved with zeros.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..930
Index entries for linear recurrences with constant coefficients, signature (20,-97).
|
|
FORMULA
|
a(n) = ((10+sqrt(3))^n + (10-sqrt(3))^n)/2.
G.f.: (1-10*x)/(1-20*x+97*x^2).
|
|
MAPLE
|
seq(coeff(series((1-10*x)/(1-20*x+97*x^2), x, n+1), x, n), n = 0..20); # G. C. Greubel, Aug 27 2019
|
|
MATHEMATICA
|
LinearRecurrence[{20, -97}, {1, 10}, 20] (* G. C. Greubel, Aug 27 2019 *)
|
|
PROG
|
(Magma) [ n le 2 select 9*n-8 else 20*Self(n-1)-97*Self(n-2): n in [1..18] ];
(PARI) my(x='x+O('x^20)); Vec((1-10*x)/(1-20*x+97*x^2)) \\ G. C. Greubel, Aug 27 2019
(Sage)
def A162667_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1-10*x)/(1-20*x+97*x^2)).list()
A162667_list(20) # G. C. Greubel, Aug 27 2019
(GAP) a:=[1, 10];; for n in [3..20] do a[n]:=20*a[n-1]-97*a[n-2]; od; a; # G. C. Greubel, Aug 27 2019
|
|
CROSSREFS
|
Cf. A152056, A000244 (powers of 3).
Sequence in context: A037596 A037687 A015588 * A227014 A036334 A190954
Adjacent sequences: A162664 A162665 A162666 * A162668 A162669 A162670
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Klaus Brockhaus, Jul 15 2009
|
|
STATUS
|
approved
|
|
|
|