|
|
A037687
|
|
Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,0,3,2.
|
|
0
|
|
|
1, 10, 103, 1032, 10321, 103210, 1032103, 10321032, 103210321, 1032103210, 10321032103, 103210321032, 1032103210321, 10321032103210, 103210321032103, 1032103210321032
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 10*a(n-1) + (1/2)*((n mod 4) - ((n+1) mod 4) + ((n+2) mod 4) + ((n+3) mod 4)), with a(0)=0. - Paolo P. Lava, Jul 30 2009
G.f.: x*(1+3*x^2+2*x^3) / ( (x-1)*(10*x-1)*(1+x)*(x^2+1) ). - R. J. Mathar, Aug 12 2013
|
|
PROG
|
(PARI) Vec(x*(1+3*x^2+2*x^3)/((x-1)*(10*x-1)*(1+x)*(x^2+1)) + O(x^25)) \\ Jinyuan Wang, Apr 14 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|