login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162669 a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)/5. 2
0, 144, 1008, 4032, 12096, 30240, 66528, 133056, 247104, 432432, 720720, 1153152, 1782144, 2673216, 3907008, 5581440, 7814016, 10744272, 14536368, 19381824, 25502400, 33153120, 42625440, 54250560, 68402880, 85503600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

FORMULA

From R. J. Mathar, Jul 13 2009: (Start)

a(n) = 144 * A000579(n+5).

G.f.: 144*x/(1-x)^7. (End)

E.g.f.: x*(720 +1800*x +1200*x^2 +300*x^3 +30*x^4 +x^5)*exp(x)/5. - G. C. Greubel, Aug 27 2019

MAPLE

seq(144*binomial(n+5, 6), n = 0..30); # G. C. Greubel, Aug 27 2019

MATHEMATICA

CoefficientList[Series[144*x/(1-x)^7, {x, 0, 30}], x] (* Vincenzo Librandi, Mar 05 2012 *)

Table[(Times@@(n+Range[0, 5]))/5, {n, 0, 30}] (* Harvey P. Dale, Jul 01 2019 *)

144*Binomial[Range[30] +4, 6] (* G. C. Greubel, Aug 27 2019 *)

PROG

(MAGMA) [n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)/5: n in [1..30]]; // Vincenzo Librandi, Mar 05 2012

(PARI) vector(30, n, 144*binomial(n+4, 6)) \\ G. C. Greubel, Aug 27 2019

(Sage) [144*binomial(n+5, 6) for n in (0..30)] # G. C. Greubel, Aug 27 2019

(GAP) List([0..30], n-> 144*Binomial(n+5, 6)); # G. C. Greubel, Aug 27 2019

CROSSREFS

Cf. A000579.

Sequence in context: A120089 A159748 A235957 * A230796 A230789 A165080

Adjacent sequences:  A162666 A162667 A162668 * A162670 A162671 A162672

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Jul 10 2009

EXTENSIONS

Definition factorized, offset corrected by R. J. Mathar, Jul 13 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 5 19:09 EDT 2021. Contains 343573 sequences. (Running on oeis4.)