|
|
A162234
|
|
Base 9 perfect digital invariants (written in base 10): numbers equal to the sum of the k-th powers of their base-9 digits, for some k.
|
|
11
|
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 27, 28, 41, 50, 126, 127, 243, 244, 353, 468, 469, 1052, 1824, 2187, 2188, 8052, 8295, 9857, 19683, 19684, 36804, 65538, 65539, 177147, 177148, 1198372, 1594323, 1594324, 3357009, 3357010, 5300099, 6287267, 10097892
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Whenever a(n) is a multiple of 9, then a(n+1) = a(n) + 1 is also a base 9 perfect digital invariant, with the same exponent k. - M. F. Hasler, Nov 21 2019
|
|
LINKS
|
Joseph Myers, Table of n, a(n) for n=1..506 (complete to 120 base 9 digits)
|
|
PROG
|
(PARI) select( {is_A162234(n, b=9)=n<b|| forstep(p=logint(n, max(vecmax(b=digits(n, b)), 2)), 2, -1, my(t=vecsum([d^p|d<-b])); t>n|| return(t==n))}, [0..10^5]) \\ M. F. Hasler, Nov 21 2019
|
|
CROSSREFS
|
Cf. A162235 (corresponding exponents), A010353 (restriction to power = number of digits), A033841, A162236. In other bases: A162216 (base 3), A162219 (base 4), A162222 (base 5), A162225 (base 6), A162228 (base 7), A162231 (base 8), A023052 (base 10).
Sequence in context: A335900 A096986 A031097 * A024651 A004848 A183531
Adjacent sequences: A162231 A162232 A162233 * A162235 A162236 A162237
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
Joseph Myers, Jun 28 2009
|
|
STATUS
|
approved
|
|
|
|