login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162225
Base-6 perfect digital invariants (written in base 10): numbers equal to the sum of the k-th powers of their base-6 digits, for some k.
11
0, 1, 2, 3, 4, 5, 99, 190, 251, 308, 2292, 2293, 2324, 3432, 3433, 6197, 36140, 269458, 391907, 10067135, 1428423394, 2510142206, 2511720147, 3866632806, 3866632807, 3930544834, 4953134588, 5018649129, 6170640875, 32693825124, 32693825125
OFFSET
1,3
COMMENTS
Whenever a(n) is a multiple of 6, then a(n+1) = a(n) + 1 is also a base-6 perfect digital invariant, with the same exponent k. - M. F. Hasler, Nov 21 2019
LINKS
Joseph Myers, Table of n, a(n) for n = 1..764 (complete to 350 base-6 digits)
PROG
(PARI) select( {is_A162225(n, b=6)=if(n<b, 1, my(t=vecmax(b=digits(n, b))); t>1 && forstep(p=logint(n, t), logint(n, vecsum(b)), -1, (t=vecsum([d^p|d<-b]))>n|| return(t==n)))}, [0..10^5]) \\ M. F. Hasler, Nov 21 2019
CROSSREFS
Cf. A162226 (corresponding exponents), A010348 (restriction to power = number of digits), A033838, A162227. In other bases: A162216 (base 3), A162219 (base 4), A162222 (base 5), A162228 (base 7), A162231 (base 8), A162234 (base 9), A023052 (base 10).
Sequence in context: A374431 A334536 A097931 * A010348 A171591 A140432
KEYWORD
base,nonn
AUTHOR
Joseph Myers, Jun 28 2009
STATUS
approved