login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161953 Base-16 Armstrong or narcissistic numbers (written in base 10). 13
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 342, 371, 520, 584, 645, 1189, 1456, 1457, 1547, 1611, 2240, 2241, 2458, 2729, 2755, 3240, 3689, 3744, 3745, 47314, 79225, 177922, 177954, 368764, 369788, 786656, 786657, 787680, 787681, 811239, 812263, 819424, 819425, 820448, 820449, 909360 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Whenever 16|a(n) (n = 22, 26, 33, 41, 43, 47, 49, 51, 53, 61, 116, 149, 157, 196, 198, 204, 206, 243, 247), then a(n+1) = a(n) + 1. Zero also satisfies the definition (n = Sum_{i=1..k} d[i]^k where d[1..k] are the base-16 digits of n), but this sequence only considers positive terms. - M. F. Hasler, Nov 22 2019

LINKS

Joseph Myers, Table of n, a(n) for n=1..293 (the full list of terms, from Winter)

Eric Weisstein's World of Mathematics, Narcissistic Number

D. T. Winter, Table of Armstrong Numbers

EXAMPLE

645 is in the sequence because 645 is 285 in hexadecimal and 2^3 + 8^3 + 5^3 = 645. (The exponent 3 is the number of hexadecimal digits.)

PROG

(PARI) isok(n) = {my(b=16, d=digits(n, b), e=#d); sum(k=1, #d, d[k]^e) == n; } \\ Michel Marcus, Feb 25 2019

(PARI) select( is_A161953(n)={n==vecsum([d^#n|d<-n=digits(n, 16)])}, [1..10^5]) \\ M. F. Hasler, Nov 22 2019

CROSSREFS

In other bases: A010344 (base 4), A010346 (base 5), A010348 (base 6), A010350 (base 7), A010354 (base 8), A010353 (base 9), A005188 (base 10), A161948 (base 11), A161949 (base 12), A161950 (base 13), A161951 (base 14), A161952 (base 15).

Sequence in context: A043320 A044917 A246337 * A187829 A105427 A247160

Adjacent sequences:  A161950 A161951 A161952 * A161954 A161955 A161956

KEYWORD

base,fini,full,nonn

AUTHOR

Joseph Myers, Jun 22 2009

EXTENSIONS

Terms sorted in increasing order by Pontus von Brömssen, Mar 03 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 09:37 EDT 2020. Contains 334620 sequences. (Running on oeis4.)