OFFSET
1,2
COMMENTS
From M. F. Hasler, Nov 20 2019: (Start)
Like the other single-digit terms, zero would satisfy the definition (n = Sum_{i=1..k} d[i]^k when d[1..k] are the base 11 digits of n), but here only positive numbers are considered.
Terms a(n+1) = a(n) + 1 (n = 20, 22, 24, 30, 34, 56, 67, 57, 195, ...) correspond to solutions a(n) that are multiples of 11, in which case a(n) + 1 is also a solution. (End)
LINKS
Joseph Myers, Table of n, a(n) for n = 1..134 (the full list of terms, from Winter)
Henk Koppelaar and Peyman Nasehpour, On Hardy's Apology Numbers, arXiv:2008.08187 [math.NT], 2020.
Eric Weisstein's World of Mathematics, Narcissistic Number
D. T. Winter, Table of Armstrong Numbers
EXAMPLE
16841 = 11720_11 (= 1*11^4 + 1*11^3 + 7*11^2 + 2*11^1 + 0*11^0) = 1^5 + 1^5 + 7^5 + 2^5 + 0^5. It's easy to see that 16841 + 1 then also satisfies this relation, as for all terms that are multiples of 11. - M. F. Hasler, Nov 20 2019
MATHEMATICA
Select[Range[10^7], # == Total[IntegerDigits[#, 11]^IntegerLength[#, 11]] &] (* Michael De Vlieger, Nov 04 2020 *)
PROG
(PARI) select( {is_A161948(n)=n==vecsum([d^#n|d<-n=digits(n, 11)])}, [0..10^5]) \\ This gives only terms < 10^5, for illustration of is_A161948(). - M. F. Hasler, Nov 20 2019
CROSSREFS
KEYWORD
base,fini,full,nonn
AUTHOR
Joseph Myers, Jun 22 2009
STATUS
approved