|
|
A160316
|
|
Numerator of Hermite(n, 18/31).
|
|
1
|
|
|
1, 36, -626, -160920, -2183604, 1158543216, 62691990216, -11103408719136, -1243180750254960, 125971505456256576, 26039514814335534816, -1483749801553172137344, -603942415060596074024256, 12479278480840903510828800, 15539359208014326031959897216
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..368
|
|
FORMULA
|
From G. C. Greubel, Oct 04 2018: (Start)
a(n) = 31^n * Hermite(n, 18/31).
a(n+2) = 36*a(n+1) - 1922*(n+1)*a(n)
E.g.f.: exp(36*x - 961*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(36/31)^(n-2*k)/(k!*(n-2*k)!)). (End)
|
|
EXAMPLE
|
Numerators of 1, 36/31, -626/961, -160920/29791, -2183604/923521, ...
|
|
MATHEMATICA
|
Table[31^n*HermiteH[n, 18/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
|
|
PROG
|
(PARI) a(n)=numerator(polhermite(n, 18/31)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(36*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018
(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(36/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
|
|
CROSSREFS
|
Cf. A009975 (denominators).
Sequence in context: A282556 A129839 A342900 * A210432 A010952 A323980
Adjacent sequences: A160313 A160314 A160315 * A160317 A160318 A160319
|
|
KEYWORD
|
sign,frac
|
|
AUTHOR
|
N. J. A. Sloane, Nov 12 2009
|
|
STATUS
|
approved
|
|
|
|