login
A160313
Numerator of Hermite(n, 15/31).
1
1, 30, -1022, -145980, 1513452, 1167697800, 20486660280, -12851291221200, -661166264043120, 177766465895877600, 16769848012294217760, -2913576034149940939200, -441955407700422580057920, 53940055420621560419971200, 12660899479421405397926325120
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Oct 04 2018: (Start)
a(n) = 31^n * Hermite(n, 15/31).
a(n+2) = 30*a(n+1) - 1922*(n+1)*a(n)
E.g.f.: exp(30*x - 961*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(30/31)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 30/31, -1022/961, -145980/29791, 1513452/923521, ...
MATHEMATICA
Table[31^n*HermiteH[n, 15/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 15/31)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(30*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(30/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
CROSSREFS
Cf. A009975 (denominators).
Sequence in context: A061466 A180812 A292002 * A001821 A027488 A269541
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved