login
A160314
Numerator of Hermite(n, 16/31).
1
1, 32, -898, -151744, 322060, 1176913792, 34566244744, -12466050017536, -863967857346928, 164031013634531840, 20193908432692179424, -2506471012209552223232, -507146684474683728525632, 41580553522411233163802624, 14002144771001607102183125120
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Oct 04 2018: (Start)
a(n) = 31^n * Hermite(n, 16/31).
a(n+2) = 32*a(n+1) - 1922*(n+1)*a(n)
E.g.f.: exp(32*x - 961*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(32/31)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 32/31, -898/961, -151744/29791, 322060/923521, ...
MATHEMATICA
Table[31^n*HermiteH[n, 16/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 16/31)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(32*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(32/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
CROSSREFS
Cf. A009975 (denominators).
Sequence in context: A240634 A222606 A283854 * A241223 A283412 A227441
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved