login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160314 Numerator of Hermite(n, 16/31). 1
1, 32, -898, -151744, 322060, 1176913792, 34566244744, -12466050017536, -863967857346928, 164031013634531840, 20193908432692179424, -2506471012209552223232, -507146684474683728525632, 41580553522411233163802624, 14002144771001607102183125120 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..368

FORMULA

From G. C. Greubel, Oct 04 2018: (Start)

a(n) = 31^n * Hermite(n, 16/31).

a(n+2) = 32*a(n+1) - 1922*(n+1)*a(n)

E.g.f.: exp(32*x - 961*x^2).

a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(32/31)^(n-2*k)/(k!*(n-2*k)!)). (End)

EXAMPLE

Numerators of 1, 32/31, -898/961, -151744/29791, 322060/923521, ...

MATHEMATICA

Table[31^n*HermiteH[n, 16/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 16/31)) \\ Charles R Greathouse IV, Jan 29 2016

(PARI) x='x+O('x^30); Vec(serlaplace(exp(32*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(32/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018

CROSSREFS

Cf. A009975 (denominators).

Sequence in context: A240634 A222606 A283854 * A241223 A283412 A227441

Adjacent sequences:  A160311 A160312 A160313 * A160315 A160316 A160317

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 26 13:14 EDT 2022. Contains 354883 sequences. (Running on oeis4.)