login
A129839
a(n) = Stirling_2(n,3)^2.
1
0, 0, 0, 1, 36, 625, 8100, 90601, 933156, 9150625, 87048900, 812307001, 7486748676, 68447640625, 622473660900, 5641104760201, 51003678922596, 460438253730625, 4152386009780100, 37422167780506201, 337103845136750916, 3035761307578140625, 27332814735512302500
OFFSET
0,5
LINKS
FORMULA
G.f.: x^3*(1+11*x-36*x^2-36*x^3)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-6*x)*(1-9*x)).
a(n) = (3^n - 3*2^n + 3)^2/36 for n>0. - Charles R Greathouse IV, Jan 03 2013
MATHEMATICA
StirlingS2[Range[0, 30], 3]^2 (* Harvey P. Dale, Jan 03 2013 *)
PROG
(Sage)[stirling_number2(n, 3)^2for n in range(0, 23)] # Zerinvary Lajos, Mar 14 2009
(PARI) a(n)=(3^n-3<<n+3)^2/36 \\ Charles R Greathouse IV, Jan 03 2013
CROSSREFS
Cf. A000392.
Sequence in context: A126926 A163720 A282556 * A342900 A160316 A210432
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 08 2008
EXTENSIONS
Definition corrected (exponent changed from 3 to 2) by Harvey P. Dale, Jan 03 2013
STATUS
approved