login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159281 Numerator of Hermite(n, 2/11). 1
1, 4, -226, -2840, 152716, 3359984, -171346424, -5564082464, 268004512400, 11844081699904, -536337501207584, -30808027718598016, 1304498317340196544, 94684505764169424640, -3725213683295580628864, -335691960262188333195776, 12179757829314204349993216 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Denominator is 11^n. - Robert Israel, May 21 2014

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..434 (terms 0..82 from Robert Israel)

FORMULA

a(n) = 4*a(n-1) - 242*(n-1)*a(n-2) for n >= 2.

E.g.f.: exp(-11*x^2 + 4*x).  - Robert Israel, May 21 2014

From G. C. Greubel, Jun 27 2018: (Start)

a(n) = 11^n * Hermite(n, 2/11).

a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/11)^(n-2*k)/(k!*(n-2*k)!)). (End)

MAPLE

N:= 30; # to get a(n) for n <= N

A159281[0]:= 1:

A159281[1]:= 4:

for n from 2 to N do

  A159281[n]:= 4*A159281[n-1] - 242*(n-1)*A159281[n-2]

od:

seq(A159281[n], n=0..N); # Robert Israel, May 21 2014

MATHEMATICA

Numerator[Table[HermiteH[n, 2/11], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 12 2011 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 2/11)) \\ Charles R Greathouse IV, Jan 29 2016

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(4/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 27 2018

CROSSREFS

Cf. A159280.

Sequence in context: A211610 A042539 A182484 * A290346 A113255 A145767

Adjacent sequences:  A159278 A159279 A159280 * A159282 A159283 A159284

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 18:08 EDT 2020. Contains 334630 sequences. (Running on oeis4.)