login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113255
Corresponds to m = 9 in a family of 4th-order linear recurrence sequences given by a(m,n) = m^4*a(n-4) + (2*m)^2*a(n-3) - 4*a(m-1), a(m,0) = -1, a(m,1) = 4, a(m,2) = -13 + 6*(m-1) + 3*(m-1)^2, a(m,3) = (-8+m^2)^2.
8
-1, 4, 227, 5329, -26581, 206116, 2391479, 16785409, -174757993, 2826198244, 9824173259, 14210785681, -287742103741, 22876687229764, -22446053606113, 89792737665409, 5164999769137199, 122161424469552196, -606821408584323661, 4689875711360495569
OFFSET
0,2
COMMENTS
Conjecture: a(m, 2*n+1) is a perfect square for all m,n (see A113249).
FORMULA
G.f.: (-1+243*x^2+6561*x^3) / ((9*x+1)*(1-9*x)*(81*x^2+4*x+1)).
a(n) = -4*a(n-1) + 324*a(n-3) + 6561*a(n-4) for n > 3. - Colin Barker, May 20 2019
MATHEMATICA
LinearRecurrence[{-4, 0, 324, 6561}, {-1, 4, 227, 5329}, 25] (* Paolo Xausa, Jun 10 2024 *)
PROG
(PARI) Vec(-(1 - 243*x^2 - 6561*x^3) / ((1 - 9*x)*(1 + 9*x)*(1 + 4*x + 81*x^2)) + O(x^20)) \\ Colin Barker, May 20 2019
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Nov 18 2005
STATUS
approved