login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113251
Corresponds to m = 5 in a family of 4th-order linear recurrence sequences given by a(m,n) = m^4*a(n-4) + (2*m)^2*a(n-3) - 4*a(m-1), a(m,0) = -1, a(m,1) = 4, a(m,2) = -13 + 6*(m-1) + 3*(m-1)^2, a(m,3) = (-8+m^2)^2.
8
-1, 4, 59, 289, -1381, 13924, 10079, 2209, 520439, 7628644, -23994301, 149401729, 490531859, 406344964, -1681645081, 149155846849, -249406479121, 1083427010884, 9530848465739, 30158362505569, -168169798384501, 2302905921914404, -239007146013841, 2988025311585889
OFFSET
0,2
COMMENTS
Conjecture: a(m, 2*n+1) is a perfect square for all m,n (see A113249).
FORMULA
G.f.: (-1+75*x^2+625*x^3) / ((5*x+1)*(1-5*x)*(25*x^2+4*x+1)).
a(n) = -4*a(n-1) + 100*a(n-3) + 625*a(n-4) for n>3. - Colin Barker, May 20 2019
a(n) = 5^(n+1)*(1 - (-1)^n + 2*cos(arccos(-2/5)*(n+1)))/4. - Eric Simon Jacob, Jul 29 2023
MAPLE
with(gfun): seriestolist(series((-1+75*x^2+625*x^3)/((5*x+1)*(1-5*x)*(25*x^2+4*x+1)), x=0, 25));
MATHEMATICA
LinearRecurrence[{-4, 0, 100, 625}, {-1, 4, 59, 289}, 40] (* Harvey P. Dale, Jul 05 2021 *)
PROG
(PARI) Vec(-(1 - 75*x^2 - 625*x^3) / ((1 - 5*x)*(1 + 5*x)*(1 + 4*x + 25*x^2)) + O(x^30)) \\ Colin Barker, May 20 2019
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Nov 18 2005
STATUS
approved