

A159282


Denominator of the rational coefficient in the main term in the dynamical analog of Mertens's theorem for a full ndimensional shift, n >= 2.


2



6, 12, 1620, 2160, 2551500, 3061800, 33756345000, 38578680000, 4060381958325000, 4511535509250000, 3168740859543387253125000, 3456808210410967912500000, 34159303730702924635072148437500
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

a(n) for n >= 2 may be defined as follows. For a full ndimensional shift, let M(N) = Sum_{L} O(L)/exp(h[L]) where the sum is over subgroups L of finite index in Z^n, O(L) is the number of points with stabilizer L and exp(h) is the number of symbols.
Then M(N) is asymptotic to a rational times a power of Pi times a product of values of the zeta function at odd integers and a(n) is the denominator of that rational.


LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 2..63
R. Miles and T. Ward, Orbitcounting for nilpotent group shifts, Proc. Amer. Math. Soc. 137 (2009), 14991507.


FORMULA

By Perron's formula, M(N) = residue(z=n1, zeta(z+1)...zeta(zn+2)N^z) = (a(n)/b(n))*N^(d1)*Pi^(floor(n/2)*(floor(n/2)+1)*Product_{j=1..floor((n1)/2)} zeta(2*j+1).


EXAMPLE

For n=3, using the formula in terms of residues, we have residue(zeta(z1)*zeta(z)*zeta(z+1)*N^z/z,z=2) = (1/12)*zeta(3)*Pi^2N^2, so a(3)=12.


MAPLE

residue(product(Zeta(zj), j=1..(n2))*N^z/z, z=n1) # generates an expression from which a(n) can be read off


MATHEMATICA

Denominator[Table[Residue[Product[Zeta[z  j], {j, 1, n2}]/z, {z, n1}], {n, 2, 14}]] (* Vaclav Kotesovec, Sep 05 2019 *)


CROSSREFS

This is the denominator of a rational sequence whose numerator is A159283.
Sequence in context: A259130 A032511 A036900 * A202383 A216423 A229336
Adjacent sequences: A159279 A159280 A159281 * A159283 A159284 A159285


KEYWORD

easy,frac,nonn


AUTHOR

Thomas Ward (t.ward(AT)uea.ac.uk), Apr 08 2009


STATUS

approved



