login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157165
Numerators of partial sums of a series related to Lebesgue's constant L(0) = 1.
5
1, 19, 734, 16294, 557407, 81759221, 1083213812, 3737624804, 1221606572113, 4687376819963, 543445163726882, 314646975551939566, 4747879086124761619, 415213127253949396153, 374983405094739446762072, 11671625151617599366571432, 11713911632041456348356827
OFFSET
1,2
COMMENTS
For the denominators see A157166.
Lebesgue's constants L(n) := (2/Pi)*Integral_{x=0..Pi/2}
|sin((2*n+1)*x)|/sin(x) dx. (Called rho_n in the Szego reference.) L(0) = 1.
1 = L(0) = (16/Pi^2)*Sum_{k>=1} Theta(1,k)/(4*k^2-1) with Theta(1,k) = Sum_{j=1..k} 1/(2*j-1) = Integral_{x=0..Pi/2} sin(k*x)^2/sin(x) dx (see Szego reference formula (R), p. 165 and the line before this).
The rationals (partial sums) R(0;n) = 3*Sum_{k=1..n} Theta(1,k)/(4*k^2-1) give (in lowest terms) A157165(n)/A157166(n). The sequence {R(0;n)/3} converges slowly to (Pi^2)/16, approximately 0.6168502752 because L(0)=1 (see the W. Lang link for R(0;10^n)/3 for n=0..4).
LINKS
FORMULA
a(n) = numerator(R(0;n)) = numerator(3*Sum_{k=1..n} Theta(1,k)/(4*k^2-1)), n >= 1, with Theta(1,k) defined above.
EXAMPLE
Rationals R(0;n) = A157165(n)/ A157166(n): [1, 19/15, 734/525, 16294/11025, 557407/363825, 81759221/52026975, ...].
MATHEMATICA
theta[1, k_] := Sum[1 / (2j-1), {j, 1, k}]; a[n_] := Numerator[ 3*Sum[theta[1, k]/(4k^2 - 1), {k, 1, n}]]; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Nov 03 2011, after given formula *)
CROSSREFS
A157167/A157168 for 45*((Pi^2)/16)*L(1) partial sums.
Sequence in context: A180990 A041687 A041684 * A201708 A280625 A183441
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Oct 16 2009, Nov 24 2009
STATUS
approved