OFFSET
1,2
COMMENTS
For the denominators see A157166.
Lebesgue's constants L(n) := (2/Pi)*Integral_{x=0..Pi/2}
|sin((2*n+1)*x)|/sin(x) dx. (Called rho_n in the Szego reference.) L(0) = 1.
1 = L(0) = (16/Pi^2)*Sum_{k>=1} Theta(1,k)/(4*k^2-1) with Theta(1,k) = Sum_{j=1..k} 1/(2*j-1) = Integral_{x=0..Pi/2} sin(k*x)^2/sin(x) dx (see Szego reference formula (R), p. 165 and the line before this).
LINKS
Wolfdieter Lang, Sequences related to Lebesgue's constants.
Eric Weisstein's World of Mathematics, Lebesgue Constants
G. Szego, Über die Lebesgueschen Konstanten bei den Fourierschen Reihen, Math. Z. 9 (1921) 163-166.
FORMULA
a(n) = numerator(R(0;n)) = numerator(3*Sum_{k=1..n} Theta(1,k)/(4*k^2-1)), n >= 1, with Theta(1,k) defined above.
EXAMPLE
MATHEMATICA
theta[1, k_] := Sum[1 / (2j-1), {j, 1, k}]; a[n_] := Numerator[ 3*Sum[theta[1, k]/(4k^2 - 1), {k, 1, n}]]; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Nov 03 2011, after given formula *)
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Oct 16 2009, Nov 24 2009
STATUS
approved