login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157168
Denominators of partial sums of a series related to Lebesgue's constant L(1) = (1 + 6*sqrt(3)/Pi)/3 approximately 1.435991124.
4
1, 1155, 1786785, 2342475135, 448349740839, 903424727790585, 6852476560291587225, 47086107436387612457865, 1354734576812637878430573, 19582688307826680532713932715, 3924930242268690398199663942735, 66681761294543429372270719198537125, 102223140064535077227691012531357412625
OFFSET
1,2
COMMENTS
For the numerators see A157167.
Lebesgue's constants L(n):= (2/Pi)*int(|sin((2*n+1)*x)|/sin(x),x=0..Pi/2). (Called \rho_n in the Szego reference). L(1) = (1 + 6*sqrt(3)/Pi)/3.
L(1) = (16/(Pi^2))*sum(Theta(1,3*k)/(4*k^2-1),k=1..infty) with Theta(1,m):=sum(1/(2*j-1),j=1..m) = int(((sin(m*x))^2)/sin(x),x=0..Pi/2) (see Szego reference formula (R), p.165 and the line before this).
The rationals (partial sums) R(1;n):=45*sum(Theta(1,3*k)/(4*k^2-1),k=1..n) give (in lowest terms) A157167(n)/a(n). The sequence {R(1;n)/45} converges slowly to ((Pi^2)/48)*(1 + 6*sqrt(3)/Pi), approximately 0.8857915201 because of the given L(1) value (see the W. Lang link for R(1;10^n)/45 for n=0..4).
FORMULA
a(n) = denominator(R(1;n)) = denominator(45*sum(Theta(1,3*k)/(4*k^2-1),k=1..n)), n>=1, with Theta(1,m) defined above.
EXAMPLE
Rationals R(1;n): [23, 33073/1155, 55943738/1786785, 77064019958/2342475135,...].
MATHEMATICA
theta[1, k_] := Sum[1/(2*j-1), {j, 1, k}]; a[n_] := Denominator[45*Sum[theta[1, 3*k]/(4*k^2-1), {k, 1, n}]]; Table[a[n], {n, 1, 13}] (* Jean-François Alcover, Dec 02 2013 *)
CROSSREFS
A157165/A157166 related to L(0) = 1.
Sequence in context: A284846 A136355 A321245 * A062915 A225938 A221813
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Oct 16 2009
STATUS
approved