login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157167
Numerators of partial sums of a series related to Lebesgue's constant L(1) = (1 + 6*sqrt(3)/Pi)/3, approximately 1.435991124.
4
23, 33073, 55943738, 77064019958, 15226093370063, 31370562345762421, 241905492960111168964, 1683591136668277300660676, 48935652383592600478507247, 713289082617826259771761324613, 143961819529547244077111055694498, 2460282354560331257420364974778935366
OFFSET
1,1
COMMENTS
For the denominators see A157168.
Lebesgue's constants L(n):= (2/Pi)*int(|sin((2*n+1)*x)|/sin(x),x=0..Pi/2). (Called rho_n in the Szego reference). L(1) = (1 + 6*sqrt(3)/Pi)/3.
L(1) = (16/(Pi^2))*sum(Theta(1,3*k)/(4*k^2-1),k=1..infty) with Theta(1,m):=sum(1/(2*j-1),j=1..m) = int(((sin(m*x))^2)/sin(x),x=0..Pi/2) (see Szego reference formula (R), p.165 and the line before this).
The rationals (partial sums) R(1;n):=45*sum(Theta(1,3*k)/(4*k^2-1),k=1..n) give (in lowest terms) a(n)/A157168(n). The sequence {R(1;n)/45} converges slowly to ((Pi^2)/48)*(1 + 6*sqrt(3)/Pi), approximately 0.8857915201 because of the given L(1) value (see the W. Lang link for r(1;10^n)/45 for n=0..4).
LINKS
FORMULA
a(n) = numerator(R(1;n)) = numerator(45*sum(Theta(1,3*k)/(4*k^2-1),k=1..n)), n>=1.
EXAMPLE
Rationals R(1;n): [23, 33073/1155, 55943738/1786785, 77064019958/2342475135,...].
MATHEMATICA
theta[1, k_] := Sum[1/(2*j-1), {j, 1, k}]; a[n_] := Numerator[45*Sum[theta[1, 3*k]/(4*k^2-1), {k, 1, n}]]; Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Dec 02 2013 *)
CROSSREFS
A157165/A157166 related to L(0) = 1.
Sequence in context: A273940 A348307 A033998 * A273192 A233210 A173369
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Oct 16 2009, Nov 24 2009
STATUS
approved