login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of partial sums of a series related to Lebesgue's constant L(0) = 1.
5

%I #23 Mar 26 2022 17:45:50

%S 1,19,734,16294,557407,81759221,1083213812,3737624804,1221606572113,

%T 4687376819963,543445163726882,314646975551939566,4747879086124761619,

%U 415213127253949396153,374983405094739446762072,11671625151617599366571432,11713911632041456348356827

%N Numerators of partial sums of a series related to Lebesgue's constant L(0) = 1.

%C For the denominators see A157166.

%C Lebesgue's constants L(n) := (2/Pi)*Integral_{x=0..Pi/2}

%C |sin((2*n+1)*x)|/sin(x) dx. (Called rho_n in the Szego reference.) L(0) = 1.

%C 1 = L(0) = (16/Pi^2)*Sum_{k>=1} Theta(1,k)/(4*k^2-1) with Theta(1,k) = Sum_{j=1..k} 1/(2*j-1) = Integral_{x=0..Pi/2} sin(k*x)^2/sin(x) dx (see Szego reference formula (R), p. 165 and the line before this).

%C The rationals (partial sums) R(0;n) = 3*Sum_{k=1..n} Theta(1,k)/(4*k^2-1) give (in lowest terms) A157165(n)/A157166(n). The sequence {R(0;n)/3} converges slowly to (Pi^2)/16, approximately 0.6168502752 because L(0)=1 (see the W. Lang link for R(0;10^n)/3 for n=0..4).

%H Wolfdieter Lang, <a href="/A157165/a157165.txt">Sequences related to Lebesgue's constants.</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LebesgueConstants.html">Lebesgue Constants</a>

%H G. Szego, <a href="http://dx.doi.org/10.1007/BF01667326">Über die Lebesgueschen Konstanten bei den Fourierschen Reihen</a>, Math. Z. 9 (1921) 163-166.

%F a(n) = numerator(R(0;n)) = numerator(3*Sum_{k=1..n} Theta(1,k)/(4*k^2-1)), n >= 1, with Theta(1,k) defined above.

%e Rationals R(0;n) = A157165(n)/ A157166(n): [1, 19/15, 734/525, 16294/11025, 557407/363825, 81759221/52026975, ...].

%t theta[1, k_] := Sum[1 / (2j-1), {j, 1, k}]; a[n_] := Numerator[ 3*Sum[theta[1, k]/(4k^2 - 1), {k, 1, n}]]; Table[a[n], {n, 1, 17}] (* _Jean-François Alcover_, Nov 03 2011, after given formula *)

%Y A157167/A157168 for 45*((Pi^2)/16)*L(1) partial sums.

%K nonn,frac,easy

%O 1,2

%A _Wolfdieter Lang_, Oct 16 2009, Nov 24 2009