The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156740 Triangle T(n, k, m) = round( Product_{j=0..m} binomial(2*(n+j), 2*(k+j))/binomial( 2*(n-k+j), 2*j) ), where m = 7, read by rows. 5
 1, 1, 1, 1, 153, 1, 1, 4845, 4845, 1, 1, 74613, 2362745, 74613, 1, 1, 735471, 358664691, 358664691, 735471, 1, 1, 5311735, 25533510145, 393216056233, 25533510145, 5311735, 1, 1, 30421755, 1056158828725, 160324910200455, 160324910200455, 1056158828725, 30421755, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS G. C. Greubel, Rows n = 0..30 of the triangle, flattened FORMULA T(n, k, m) = round( Product_{j=0..m} b(n+j, k+j)/b(n-k+j, j) ), where b(n, k) = binomial(2*n, 2*k) and m = 7. Sum_{k=0..n} T(n, k, 7) = A151614(n). EXAMPLE Triangle begins as: 1; 1, 1; 1, 153, 1; 1, 4845, 4845, 1; 1, 74613, 2362745, 74613, 1; 1, 735471, 358664691, 358664691, 735471, 1; 1, 5311735, 25533510145, 393216056233, 25533510145, 5311735, 1; MATHEMATICA b[n_, k_]:= Binomial[2*n, 2*k]; T[n_, k_, m_]:= Round[Product[b[n+j, k+j]/b[n-k+j, j], {j, 0, m}]]; Table[T[n, k, 7], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 19 2021 *) PROG (Magma) A156740:= func< n, k | Round( (&*[Binomial(2*(n+j), 2*(k+j))/Binomial(2*(n-k+j), 2*j): j in [0..7]]) ) >; [A156740(n, k): k in [0..n], n in [0..12]]; # G. C. Greubel, Jun 19 2021 (Sage) def A156740(n, k): return round( product( binomial(2*(n+j), 2*(k+j))/binomial(2*(n-k+j), 2*j) for j in (0..7)) ) flatten([[A156740(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 19 2021 CROSSREFS Cf. A086645 (m=0), A156739 (m=6), this sequence (m=7), A156741 (m=8), A156742 (m=9). Cf. A151614 (row sums). Sequence in context: A157881 A099117 A109778 * A095226 A346630 A165340 Adjacent sequences: A156737 A156738 A156739 * A156741 A156742 A156743 KEYWORD nonn,tabl AUTHOR Roger L. Bagula, Feb 14 2009 EXTENSIONS Definition corrected to give integral terms and edited by G. C. Greubel, Jun 19 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 14:11 EDT 2023. Contains 363055 sequences. (Running on oeis4.)