login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156742
Triangle T(n, k, m) = round( Product_{j=0..m} binomial(2*(n+j), 2*(k+j))/binomial( 2*(n-k+j), 2*j) ), where m = 9, read by rows.
4
1, 1, 1, 1, 231, 1, 1, 10626, 10626, 1, 1, 230230, 10590580, 230230, 1, 1, 3108105, 3097744650, 3097744650, 3108105, 1, 1, 30045015, 404255676825, 8758872997875, 404255676825, 30045015, 1, 1, 225792840, 29367745734600, 8590065627370500, 8590065627370500, 29367745734600, 225792840, 1
OFFSET
0,5
FORMULA
T(n, k, m) = round( Product_{j=0..m} b(n+j, k+j)/b(n-k+j, j) ), where b(n, k) = binomial(2*n, 2*k) and m = 9.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 231, 1;
1, 10626, 10626, 1;
1, 230230, 10590580, 230230, 1;
1, 3108105, 3097744650, 3097744650, 3108105, 1;
1, 30045015, 404255676825, 8758872997875, 404255676825, 30045015, 1;
MATHEMATICA
T[n_, k_, m_]:= Round[Product[Binomial[2*(n+j), 2*(k+j)]/Binomial[2*(n-k+j), 2*j], {j, 0, m}]];
Table[T[n, k, 9], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 19 2021 *)
PROG
(Magma)
A156742:= func< n, k | Round( (&*[Binomial(2*(n+j), 2*(k+j))/Binomial(2*(n-k+j), 2*j): j in [0..9]]) ) >;
[A156742(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 19 2021
(Sage)
def A156742(n, k): return round( product( binomial(2*(n+j), 2*(k+j))/binomial(2*(n-k+j), 2*j) for j in (0..9)) )
flatten([[A156742(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 19 2021
CROSSREFS
Cf. A086645 (m=0), A156739 (m=6), A156740 (m=7), A156741 (m=8), this sequence (m=9).
Sequence in context: A051183 A251275 A323321 * A031965 A316095 A345795
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 14 2009
EXTENSIONS
Definition corrected to give integral terms and edited by G. C. Greubel, Jun 19 2021
STATUS
approved