login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A156739
Triangle T(n, k, m) = round( Product_{j=0..m} binomial(2*(n+j), 2*(k+j))/binomial( 2*(n-k+j), 2*j) ), where m = 6, read by rows.
4
1, 1, 1, 1, 120, 1, 1, 3060, 3060, 1, 1, 38760, 988380, 38760, 1, 1, 319770, 103285710, 103285710, 319770, 1, 1, 1961256, 5226256926, 66199254396, 5226256926, 1961256, 1, 1, 9657700, 157843517260, 16494647553670, 16494647553670, 157843517260, 9657700, 1
OFFSET
0,5
FORMULA
T(n, k, m) = round( Product_{j=0..m} b(n+j, k+j)/b(n-k+j, j) ), where b(n, k) = binomial(2*n, 2*k) and m = 6.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 120, 1;
1, 3060, 3060, 1;
1, 38760, 988380, 38760, 1;
1, 319770, 103285710, 103285710, 319770, 1;
1, 1961256, 5226256926, 66199254396, 5226256926, 1961256, 1;
MATHEMATICA
b[n_, k_]:= Binomial[2*n, 2*k];
T[n_, k_, m_]:= Round[Product[b[n+j, k+j]/b[n-k+j, j], {j, 0, m}]];
Table[T[n, k, 6], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 18 2021 *)
PROG
(Magma)
A156739:= func< n, k | Round( (&*[Binomial(2*(n+j), 2*(k+j))/Binomial(2*(n-k+j), 2*j): j in [0..6]]) ) >;
[A156739(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 18 2021
(Sage)
def A156739(n, k): return round( product( binomial(2*(n+j), 2*(k+j))/binomial(2*(n-k+j), 2*j) for j in (0..6)) )
flatten([[A156739(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 18 2021
CROSSREFS
Cf. A086645 (m=0), this sequence (m=6), A156740 (m=7), A156741 (m=8), A156742 (m=9).
Sequence in context: A229031 A221406 A267428 * A326798 A090217 A267570
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 14 2009
EXTENSIONS
Definition corrected to give integral terms and edited by G. C. Greubel, Jun 18 2021
STATUS
approved