login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A165340 Triangle read by rows: T(n,0) = smallest number m such that A165331(m)=n and A165330(m)=153; T(n,k+1) = sum of cubes of digits of T(n,k), 0<=k<n. 4
153, 135, 153, 18, 513, 153, 3, 27, 351, 153, 9, 729, 1080, 513, 153, 12, 9, 729, 1080, 513, 153, 33, 54, 189, 1242, 81, 513, 153, 114, 66, 432, 99, 1458, 702, 351, 153, 78, 855, 762, 567, 684, 792, 1080, 513, 153, 126, 225, 141, 66, 432, 99, 1458, 702, 351 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

T(n,k+1) = A055012(T(n,k)), 0 <= k < n;

A165331(T(n,k)) = n - k;

A165330(T(n,k)) = 153; T(n,n) = 153;

10^10 < T(15,0) <= 22222599999999999999999,

T(14,0) = 12558 = A055012(22222599999999999999999).

LINKS

R. Zumkeller, Rows 0 to 14 of the triangle, flattened.

EXAMPLE

The triangle begins:

n=0: 153,

n=1: 135 -> 1+3^3+5^3=153,

n=2: 18 -> 1+8^3=513 -> 5^3+1+3^3=153,

n=3: 3 -> 3^3=27 -> 2^3+7^3=351 -> 3^3+5^3+1=153,

n=4: 9 -> 9^3=729 -> 7^3+2^3+9^3=1080 -> 1+0+8^3+0=513 -> 5^3+1+3^3=153,

n=5: 12 -> 1+2^3=9 -> 9^3=729 -> 7^3+2^3+9^3=1080 -> 1+0+8^3+0=513 -> 5^3+1+3^3=153,

n=6: 33 -> 2*3^3=54 -> 5^3+4^3=189 -> 1+8^3+9^3=1242 -> 1+2^3+4^3+2^3=81 -> 8^3+1=513 -> 5^3+1+3^3=153.

CROSSREFS

A008585.

Sequence in context: A156740 A095226 A346630 * A183985 A184045 A203603

Adjacent sequences: A165337 A165338 A165339 * A165341 A165342 A165343

KEYWORD

base,nonn,tabl

AUTHOR

Reinhard Zumkeller, Sep 17 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 27 22:47 EDT 2023. Contains 361575 sequences. (Running on oeis4.)