login
A165340
Triangle read by rows: T(n,0) = smallest number m such that A165331(m)=n and A165330(m)=153; T(n,k+1) = sum of cubes of digits of T(n,k), 0<=k<n.
4
153, 135, 153, 18, 513, 153, 3, 27, 351, 153, 9, 729, 1080, 513, 153, 12, 9, 729, 1080, 513, 153, 33, 54, 189, 1242, 81, 513, 153, 114, 66, 432, 99, 1458, 702, 351, 153, 78, 855, 762, 567, 684, 792, 1080, 513, 153, 126, 225, 141, 66, 432, 99, 1458, 702, 351
OFFSET
0,1
COMMENTS
T(n,k+1) = A055012(T(n,k)), 0 <= k < n;
A165331(T(n,k)) = n - k;
A165330(T(n,k)) = 153; T(n,n) = 153;
10^10 < T(15,0) <= 22222599999999999999999,
T(14,0) = 12558 = A055012(22222599999999999999999).
EXAMPLE
The triangle begins:
n=0: 153,
n=1: 135 -> 1+3^3+5^3=153,
n=2: 18 -> 1+8^3=513 -> 5^3+1+3^3=153,
n=3: 3 -> 3^3=27 -> 2^3+7^3=351 -> 3^3+5^3+1=153,
n=4: 9 -> 9^3=729 -> 7^3+2^3+9^3=1080 -> 1+0+8^3+0=513 -> 5^3+1+3^3=153,
n=5: 12 -> 1+2^3=9 -> 9^3=729 -> 7^3+2^3+9^3=1080 -> 1+0+8^3+0=513 -> 5^3+1+3^3=153,
n=6: 33 -> 2*3^3=54 -> 5^3+4^3=189 -> 1+8^3+9^3=1242 -> 1+2^3+4^3+2^3=81 -> 8^3+1=513 -> 5^3+1+3^3=153.
CROSSREFS
KEYWORD
base,nonn,tabl
AUTHOR
Reinhard Zumkeller, Sep 17 2009
STATUS
approved