OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = (2*(n^2 - 1))^2 + (5*n)^2.
G.f.: (-4-25*x^4-11*x^3-51*x^2-5*x)/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009
E.g.f.: exp(x)*(4 + 21*x + 45*x^2 + 24*x^3 + 4*x^4). - Stefano Spezia, Jul 08 2023
MATHEMATICA
Table[4n^4+17n^2+4, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {4, 25, 136, 481, 1300}, 50] (* Harvey P. Dale, Nov 08 2017 *)
PROG
(Magma) [4*n^4+17*n^2+4: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
(PARI) a(n)=4*n^4+17*n^2+4 \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Feb 13 2009
STATUS
approved