login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156701
a(n) = 4*n^4 + 17*n^2 + 4.
2
4, 25, 136, 481, 1300, 2929, 5800, 10441, 17476, 27625, 41704, 60625, 85396, 117121, 157000, 206329, 266500, 339001, 425416, 527425, 646804, 785425, 945256, 1128361, 1336900, 1573129, 1839400, 2138161, 2471956, 2843425, 3255304, 3710425
OFFSET
0,1
COMMENTS
a(n) = A087475(n)*A053755(n).
FORMULA
a(n) = (2*(n^2 - 1))^2 + (5*n)^2.
G.f.: (-4-25*x^4-11*x^3-51*x^2-5*x)/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009
E.g.f.: exp(x)*(4 + 21*x + 45*x^2 + 24*x^3 + 4*x^4). - Stefano Spezia, Jul 08 2023
MATHEMATICA
Table[4n^4+17n^2+4, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {4, 25, 136, 481, 1300}, 50] (* Harvey P. Dale, Nov 08 2017 *)
PROG
(Magma) [4*n^4+17*n^2+4: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
(PARI) a(n)=4*n^4+17*n^2+4 \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Feb 13 2009
STATUS
approved