login
A156701
a(n) = 4*n^4 + 17*n^2 + 4.
2
4, 25, 136, 481, 1300, 2929, 5800, 10441, 17476, 27625, 41704, 60625, 85396, 117121, 157000, 206329, 266500, 339001, 425416, 527425, 646804, 785425, 945256, 1128361, 1336900, 1573129, 1839400, 2138161, 2471956, 2843425, 3255304, 3710425
OFFSET
0,1
COMMENTS
a(n) = A087475(n)*A053755(n).
FORMULA
a(n) = (2*(n^2 - 1))^2 + (5*n)^2.
G.f.: (-4-25*x^4-11*x^3-51*x^2-5*x)/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009
E.g.f.: exp(x)*(4 + 21*x + 45*x^2 + 24*x^3 + 4*x^4). - Stefano Spezia, Jul 08 2023
MATHEMATICA
Table[4n^4+17n^2+4, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {4, 25, 136, 481, 1300}, 50] (* Harvey P. Dale, Nov 08 2017 *)
PROG
(Magma) [4*n^4+17*n^2+4: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
(PARI) a(n)=4*n^4+17*n^2+4 \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Feb 13 2009
STATUS
approved