login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 4*n^4 + 17*n^2 + 4.
2

%I #20 Jul 08 2023 16:28:35

%S 4,25,136,481,1300,2929,5800,10441,17476,27625,41704,60625,85396,

%T 117121,157000,206329,266500,339001,425416,527425,646804,785425,

%U 945256,1128361,1336900,1573129,1839400,2138161,2471956,2843425,3255304,3710425

%N a(n) = 4*n^4 + 17*n^2 + 4.

%C a(n) = A087475(n)*A053755(n).

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F a(n) = (2*(n^2 - 1))^2 + (5*n)^2.

%F G.f.: (-4-25*x^4-11*x^3-51*x^2-5*x)/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009

%F E.g.f.: exp(x)*(4 + 21*x + 45*x^2 + 24*x^3 + 4*x^4). - _Stefano Spezia_, Jul 08 2023

%t Table[4n^4+17n^2+4,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{4,25,136,481,1300},50] (* _Harvey P. Dale_, Nov 08 2017 *)

%o (Magma) [4*n^4+17*n^2+4: n in [0..50]]; // _Vincenzo Librandi_, Dec 27 2010

%o (PARI) a(n)=4*n^4+17*n^2+4 \\ _Charles R Greathouse IV_, Oct 21 2022

%Y Cf. A016850, A053755, A087475, A099761.

%K nonn,easy

%O 0,1

%A _Reinhard Zumkeller_, Feb 13 2009