login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156047
Triangle read by rows: T(n, k) = (n+1)!*(1/k + 1/(n-k+1)).
1
4, 9, 9, 32, 24, 32, 150, 100, 100, 150, 864, 540, 480, 540, 864, 5880, 3528, 2940, 2940, 3528, 5880, 46080, 26880, 21504, 20160, 21504, 26880, 46080, 408240, 233280, 181440, 163296, 163296, 181440, 233280, 408240, 4032000, 2268000, 1728000, 1512000, 1451520, 1512000, 1728000, 2268000, 4032000
OFFSET
1,1
COMMENTS
Row sums are (n+1)*A052517(n+2) = {4, 18, 88, 500, 3288, 24696, 209088, 1972512, 20531520, ...}.
FORMULA
T(n, k) = (n+1)*(n+1)!/(k*(n-k+1)).
Sum_{k=1..n} T(n,k) = 2*(n+1)!*H(n), where H(n) is the harmonic number. - G. C. Greubel, Dec 02 2019
EXAMPLE
Triangle begins as:
4;
9, 9;
32, 24, 32;
150, 100, 100, 150;
864, 540, 480, 540, 864;
5880, 3528, 2940, 2940, 3528, 5880;
46080, 26880, 21504, 20160, 21504, 26880, 46080;
MAPLE
seq(seq( (n+1)*(n+1)!/(k*(n-k+1)), k=1..n), n=1..10); # G. C. Greubel, Dec 02 2019
MATHEMATICA
Table[(n+1)*(n+1)!/(k*(n-k+1)), {n, 10}, {k, n}]//Flatten (* modified by G. C. Greubel, Dec 02 2019 *)
PROG
(PARI) T(n, k) = (n+1)*(n+1)!/(k*(n-k+1)); \\ G. C. Greubel, Dec 02 2019
(Magma) [(n+1)*Factorial(n+1)/(k*(n-k+1)): k in [1..n], n in [1..10]]; // G. C. Greubel, Dec 02 2019
(Sage) [[(n+1)*factorial(n+1)/(k*(n-k+1)) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Dec 02 2019
(GAP) Flat(List([1..10], n-> List([1..n], k-> (n+1)*Factorial(n+1)/(k*(n-k+1)) ))); # G. C. Greubel, Dec 02 2019
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Feb 02 2009
EXTENSIONS
Offset changed by G. C. Greubel, Dec 02 2019
STATUS
approved