login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071768
Determinant of the n X n matrix whose element (i,j) equals |i-j| (Mod 3).
1
0, -1, 4, 9, -10, 4, 18, -19, 4, 27, -28, 4, 36, -37, 4, 45, -46, 4, 54, -55, 4, 63, -64, 4, 72, -73, 4, 81, -82, 4, 90, -91, 4, 99, -100, 4, 108, -109, 4, 117, -118, 4, 126, -127, 4, 135, -136, 4, 144, -145, 4, 153, -154, 4, 162, -163, 4, 171, -172, 4, 180, -181, 4, 189
OFFSET
1,3
COMMENTS
(Mod 2) for n > 2 produces nothing but zeros.
FORMULA
a(3k) = 4, a(3k+1) = 9*k, a(3k+2) = -9*k-1.
a(n) = -a(n-1)-a(n-2)+a(n-3)+a(n-4)+a(n-5). - Colin Barker, Sep 29 2014
G.f.: -x^2*(2*x+1)*(2*x^2+5*x-1) / ((x-1)*(x^2+x+1)^2). - Colin Barker, Sep 29 2014
MATHEMATICA
Table[ Det[ Table[ Mod[ Abs[i - j], 3], {i, 1, n}, {j, 1, n}]], {n, 1, 65}]
PROG
(PARI) a(n) = matdet(matrix (n, n, i, j, abs(i-j) % 3)); \\ Michel Marcus, Sep 29 2014
(PARI) concat(0, Vec(-x^2*(2*x+1)*(2*x^2+5*x-1)/((x-1)*(x^2+x+1)^2) + O(x^100))) \\ Colin Barker, Sep 30 2014
CROSSREFS
Cf. A071769 (with Mod 4).
Sequence in context: A156047 A171001 A088037 * A301478 A173297 A161913
KEYWORD
sign,easy
AUTHOR
Robert G. Wilson v, Jun 04 2002
STATUS
approved