OFFSET
1,3
COMMENTS
(Mod 2) for n > 2 produces nothing but zeros.
LINKS
Index entries for linear recurrences with constant coefficients, signature (-1,-1,1,1,1).
FORMULA
a(3k) = 4, a(3k+1) = 9*k, a(3k+2) = -9*k-1.
a(n) = -a(n-1)-a(n-2)+a(n-3)+a(n-4)+a(n-5). - Colin Barker, Sep 29 2014
G.f.: -x^2*(2*x+1)*(2*x^2+5*x-1) / ((x-1)*(x^2+x+1)^2). - Colin Barker, Sep 29 2014
MATHEMATICA
Table[ Det[ Table[ Mod[ Abs[i - j], 3], {i, 1, n}, {j, 1, n}]], {n, 1, 65}]
PROG
(PARI) a(n) = matdet(matrix (n, n, i, j, abs(i-j) % 3)); \\ Michel Marcus, Sep 29 2014
(PARI) concat(0, Vec(-x^2*(2*x+1)*(2*x^2+5*x-1)/((x-1)*(x^2+x+1)^2) + O(x^100))) \\ Colin Barker, Sep 30 2014
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Robert G. Wilson v, Jun 04 2002
STATUS
approved