login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071769
Determinant of the n X n matrix whose element (i,j) equals |i-j| (mod 4).
1
0, -1, 4, -12, -64, -208, 1088, -960, -8192, -6400, 58368, -27648, -344064, -151552, 1982464, -638976, -10485760, -3211264, 54788096, -13369344, -272629760, -63963136, 1346371584, -264241152, -6442450944, -1224736768, 30668750848
OFFSET
1,3
FORMULA
a(4n+1) = (-1)*2^(4*n+2)*n*(3*n-2), a(4n+2) = (-1)*2^(4*n)*(12*n+1), a(4n+3) = 2^(4*n+2)*(12*n^2+4*n+1), a(4n+4) = (-1)*2^(4*n+2)*(12*n+3). 2*abs(a(n-1)) = A087982(n) for n=2, 3, 4, 5. - Benoit Cloitre, Nov 07 2003
G.f.: -x^2*(2304*x^8 + 2304*x^7 + 1280*x^6 - 704*x^5 + 224*x^4 + 48*x^3 + 16*x^2 - 4*x + 1) / ((2*x-1)^2*(2*x+1)^2*(4*x^2+1)^3). - Colin Barker, Sep 29 2014
E.g.f.: -9/4 + ((3/2)*x^2 - 15/8)*sin(2*x) + ((11/4)*x + 1/2)*cos(2*x) + ((3/4)*x + 5/8)*exp(-2*x) + (-(3/4)*x + 9/8)*exp(2*x). - Robert Israel, Sep 29 2014
MAPLE
seq(LinearAlgebra:-Determinant(Matrix(n, n, (i, j) -> abs(i-j) mod 4)), n=1..100); # Robert Israel, Sep 29 2014
MATHEMATICA
Table[ Det[ Table[ Mod[ Abs[i - j], 4], {i, 1, n}, {j, 1, n}]], {n, 1, 30}]
LinearRecurrence[{0, -4, 0, 32, 0, 128, 0, -256, 0, -1024}, {0, -1, 4, -12, -64, -208, 1088, -960, -8192, -6400}, 30] (* Harvey P. Dale, Nov 28 2024 *)
PROG
(PARI) vector(30, n, matdet(matrix(n, n, i, j, abs(i-j)%4))) \\ Colin Barker, Sep 29 2014
CROSSREFS
Cf. A071768 (with mod 3).
Sequence in context: A222645 A259816 A353452 * A221667 A275527 A222612
KEYWORD
sign,easy
AUTHOR
Robert G. Wilson v, Jun 04 2002
STATUS
approved