login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Determinant of the n X n matrix whose element (i,j) equals |i-j| (mod 4).
1

%I #27 Nov 28 2024 16:58:09

%S 0,-1,4,-12,-64,-208,1088,-960,-8192,-6400,58368,-27648,-344064,

%T -151552,1982464,-638976,-10485760,-3211264,54788096,-13369344,

%U -272629760,-63963136,1346371584,-264241152,-6442450944,-1224736768,30668750848

%N Determinant of the n X n matrix whose element (i,j) equals |i-j| (mod 4).

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,-4,0,32,0,128,0,-256,0,-1024).

%F a(4n+1) = (-1)*2^(4*n+2)*n*(3*n-2), a(4n+2) = (-1)*2^(4*n)*(12*n+1), a(4n+3) = 2^(4*n+2)*(12*n^2+4*n+1), a(4n+4) = (-1)*2^(4*n+2)*(12*n+3). 2*abs(a(n-1)) = A087982(n) for n=2, 3, 4, 5. - _Benoit Cloitre_, Nov 07 2003

%F G.f.: -x^2*(2304*x^8 + 2304*x^7 + 1280*x^6 - 704*x^5 + 224*x^4 + 48*x^3 + 16*x^2 - 4*x + 1) / ((2*x-1)^2*(2*x+1)^2*(4*x^2+1)^3). - _Colin Barker_, Sep 29 2014

%F E.g.f.: -9/4 + ((3/2)*x^2 - 15/8)*sin(2*x) + ((11/4)*x + 1/2)*cos(2*x) + ((3/4)*x + 5/8)*exp(-2*x) + (-(3/4)*x + 9/8)*exp(2*x). - _Robert Israel_, Sep 29 2014

%p seq(LinearAlgebra:-Determinant(Matrix(n,n,(i,j) -> abs(i-j) mod 4)), n=1..100); # _Robert Israel_, Sep 29 2014

%t Table[ Det[ Table[ Mod[ Abs[i - j], 4], {i, 1, n}, {j, 1, n}]], {n, 1, 30}]

%t LinearRecurrence[{0,-4,0,32,0,128,0,-256,0,-1024},{0,-1,4,-12,-64,-208,1088,-960,-8192,-6400},30] (* _Harvey P. Dale_, Nov 28 2024 *)

%o (PARI) vector(30, n, matdet(matrix(n, n, i, j, abs(i-j)%4))) \\ _Colin Barker_, Sep 29 2014

%Y Cf. A071768 (with mod 3).

%K sign,easy

%O 1,3

%A _Robert G. Wilson v_, Jun 04 2002