login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156046
A triangle sequence made symmetrical by reverse coefficients: t0(n,m)=(2 + n! - m! - (n - m)! + 2 + PartitionsP[n] - PartitionsP[ m] - PartitionsP[n - m]); t(n,m)=(t0(n,m)+Reverse[t0(n,m)])/2
0
2, 2, 2, 2, 4, 2, 2, 7, 7, 2, 2, 22, 25, 22, 2, 2, 100, 118, 118, 100, 2, 2, 606, 702, 717, 702, 606, 2, 2, 4326, 4928, 5021, 5021, 4928, 4326, 2, 2, 35289, 39611, 40210, 40288, 40210, 39611, 35289, 2, 2, 322570, 357855, 362174, 362758, 362758, 362174, 357855
OFFSET
0,1
COMMENTS
Row sums are:
{2, 4, 8, 18, 73, 440, 3337, 28554, 270512, 2810718, 31841200,...}.
When divided by two this sequence is very close to Pascal's triangle,
FORMULA
t0(n,m)=(2 + n! - m! - (n - m)! + 2 + PartitionsP[n] - PartitionsP[ m] - PartitionsP[n - m]);
t(n,m)=(t0(n,m)+Reverse[t0(n,m)])/2
EXAMPLE
{2},
{2, 2},
{2, 4, 2},
{2, 7, 7, 2},
{2, 22, 25, 22, 2},
{2, 100, 118, 118, 100, 2},
{2, 606, 702, 717, 702, 606, 2},
{2, 4326, 4928, 5021, 5021, 4928, 4326, 2},
{2, 35289, 39611, 40210, 40288, 40210, 39611, 35289, 2},
{2, 322570, 357855, 362174, 362758, 362758, 362174, 357855, 322570, 2},
{2, 3265934, 3588500, 3623782, 3628086, 3628592, 3628086, 3623782, 3588500, 3265934, 2}
MATHEMATICA
Clear[t];
t[n_, m_] =(2 + n! - m! - (n - m)! + 2 + PartitionsP[n] - PartitionsP[ m] - PartitionsP[n - m]);
Table[(Table[t[n, m], {m, 0, n}] + Reverse[Table[t[n, m], {m, 0, n}]])/2, {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A250200 A097859 A028326 * A048003 A098219 A368883
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Feb 02 2009
STATUS
approved