login
A048003
Triangular array T read by rows: T(h,k) = number of binary words of length h and maximal runlength k.
3
2, 2, 2, 2, 4, 2, 2, 8, 4, 2, 2, 14, 10, 4, 2, 2, 24, 22, 10, 4, 2, 2, 40, 46, 24, 10, 4, 2, 2, 66, 94, 54, 24, 10, 4, 2, 2, 108, 188, 118, 56, 24, 10, 4, 2, 2, 176, 370, 254, 126, 56, 24, 10, 4, 2, 2, 286, 720, 538, 278, 128, 56, 24, 10, 4, 2, 2, 464, 1388, 1126, 606, 286, 128, 56, 24, 10, 4, 2
OFFSET
1,1
LINKS
FORMULA
G.f. of column k: 2*x^k / ((1-Sum_{i=1..k-1} x^i) * (1-Sum_{j=1..k} x^j)). - Alois P. Heinz, Oct 29 2008
T(n, k) = 0 if k < 1 or k > n, 2 if k = 1 or k = n, 2T(n-1, k) + T(n-1, k-1) - 2T(n-2, k-1) + T(n-k, k-1) - T(n-k-1, k) otherwise (cf. similar formula for A048004). This is a simplification of the L-shaped sum T(n-1, k) + ... + T(n-k, k) + ... + T(n-k,1). - Andrew Woods, Oct 11 2013
For n > 2k, T(n, n-k) = 2*A045623(k). - Andrew Woods, Oct 11 2013
EXAMPLE
Rows: {2}; {2,2}; {2,4,2}; {2,8,4,2}; ...
T(3,2) = 4, because there are 4 binary words of length 3 and maximal runlength 2: 001, 011, 100, 110. - Alois P. Heinz, Oct 29 2008
MAPLE
gf:= proc(n) 2*x^n/ (1-add(x^i, i=1..n-1))/ (1-add(x^j, j=1..n)) end:
T:= (h, k)-> coeff(series(gf(k), x, h+1), x, h):
seq(seq(T(h, k), k=1..h), h=1..13); # Alois P. Heinz, Oct 29 2008
MATHEMATICA
gf[n_] := 2*x^n*(x^2-2*x+1) / (x^(2*n+1)-2*x^(n+2)-x^(n+1)+x^n+4*x^2-4*x+1); t[h_, k_] := Coefficient[ Series[ gf[k], {x, 0, h+1}], x, h]; Table[ Table[ t[h, k], {k, 1, h}], {h, 1, 13}] // Flatten (* Jean-François Alcover, Oct 07 2013, after Alois P. Heinz *)
CROSSREFS
T(h,2) = 2*a(h+1) for h=2, 3, ..., where a=A000071.
T(h,3) = 2*b(h) for h=3, 4, ..., where b=A000100.
T(h,4) = 2*c(h) for h=4, 5, ..., where c=A000102.
Cf. A048004.
Columns 5, 6 give: 2*A006979, 2*A006980. Row sums give: A000079.
Cf. A229756.
Sequence in context: A097859 A028326 A156046 * A098219 A368883 A173439
KEYWORD
nonn,tabl
EXTENSIONS
More terms from Alois P. Heinz, Oct 29 2008
STATUS
approved