The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048003 Triangular array T read by rows: T(h,k) = number of binary words of length h and maximal runlength k. 3
 2, 2, 2, 2, 4, 2, 2, 8, 4, 2, 2, 14, 10, 4, 2, 2, 24, 22, 10, 4, 2, 2, 40, 46, 24, 10, 4, 2, 2, 66, 94, 54, 24, 10, 4, 2, 2, 108, 188, 118, 56, 24, 10, 4, 2, 2, 176, 370, 254, 126, 56, 24, 10, 4, 2, 2, 286, 720, 538, 278, 128, 56, 24, 10, 4, 2, 2, 464, 1388, 1126, 606, 286, 128, 56, 24, 10, 4, 2 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Alois P. Heinz, Rows n = 1..141, flattened FORMULA G.f. of column k: 2*x^k / ((1-Sum_{i=1..k-1} x^i) * (1-Sum_{j=1..k} x^j)). - Alois P. Heinz, Oct 29 2008 T(n, k) = 0 if k < 1 or k > n, 2 if k = 1 or k = n, 2T(n-1, k) + T(n-1, k-1) - 2T(n-2, k-1) + T(n-k, k-1) - T(n-k-1, k) otherwise (cf. similar formula for A048004). This is a simplification of the L-shaped sum T(n-1, k) + ... + T(n-k, k) + ... + T(n-k,1). - Andrew Woods, Oct 11 2013 For n > 2k, T(n, n-k) = 2*A045623(k). - Andrew Woods, Oct 11 2013 EXAMPLE Rows: {2}; {2,2}; {2,4,2}; {2,8,4,2}; ... T(3,2) = 4, because there are 4 binary words of length 3 and maximal runlength 2: 001, 011, 100, 110. - Alois P. Heinz, Oct 29 2008 MAPLE gf:= proc(n) 2*x^n/ (1-add(x^i, i=1..n-1))/ (1-add(x^j, j=1..n)) end: T:= (h, k)-> coeff(series(gf(k), x, h+1), x, h): seq(seq(T(h, k), k=1..h), h=1..13); # Alois P. Heinz, Oct 29 2008 MATHEMATICA gf[n_] := 2*x^n*(x^2-2*x+1) / (x^(2*n+1)-2*x^(n+2)-x^(n+1)+x^n+4*x^2-4*x+1); t[h_, k_] := Coefficient[ Series[ gf[k], {x, 0, h+1}], x, h]; Table[ Table[ t[h, k], {k, 1, h}], {h, 1, 13}] // Flatten (* Jean-François Alcover, Oct 07 2013, after Alois P. Heinz *) CROSSREFS T(h,2) = 2*a(h+1) for h=2, 3, ..., where a=A000071. T(h,3) = 2*b(h) for h=3, 4, ..., where b=A000100. T(h,4) = 2*c(h) for h=4, 5, ..., where c=A000102. Cf. A048004. Columns 5, 6 give: 2*A006979, 2*A006980. Row sums give: A000079. Cf. A229756. Sequence in context: A097859 A028326 A156046 * A098219 A173439 A322483 Adjacent sequences: A048000 A048001 A048002 * A048004 A048005 A048006 KEYWORD nonn,tabl AUTHOR Clark Kimberling EXTENSIONS More terms from Alois P. Heinz, Oct 29 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 23:30 EST 2023. Contains 367662 sequences. (Running on oeis4.)