The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048001 Number of nonempty subsets of {1,2,...,n} in which exactly 1/6 of the elements are <= n/3. 1
 0, 0, 0, 0, 0, 0, 2, 12, 18, 63, 168, 224, 504, 1014, 1270, 2420, 4620, 5742, 12012, 27027, 35035, 84119, 199304, 260064, 601664, 1339464, 1720944, 3755844, 8093214, 10329750, 22591800, 49876200, 64071194, 144780009 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 LINKS Robert Israel, Table of n, a(n) for n = 1..3633 FORMULA a(n) = Sum_{k=1..ceiling(2*n/3)/5} binomial(floor(n/3),k)*binomial(ceiling(2*n/3),5*k). - Robert Israel, Nov 12 2018 MAPLE f:= proc(n) local n3, k; n3:= floor(n/3); add(binomial(n3, k)*binomial(n-n3, 5*k), k=1..(n-n3)/5); end proc: map(f, [\$1..50]); # Robert Israel, Nov 11 2018 MATHEMATICA Table[Sum[Binomial[Floor[n/3], k]*Binomial[n-Floor[n/3], 5*k], {k, 1, n-Floor[n/3]}], {n, 1, 40}] (* G. C. Greubel, Nov 11 2018 *) PROG (PARI) vector(40, n, sum(k=1, n-n\3, binomial(n\3, k)*binomial(n - n\3, 5*k))) \\ G. C. Greubel, Nov 11 2018 (Magma) [(&+[Binomial(Floor(n/3), k)*Binomial(n - Floor(n/3), 5*k): k in [1..(n - Floor(n/3))]]): n in [1..40]]; // G. C. Greubel, Nov 11 2018 CROSSREFS Sequence in context: A066238 A101074 A115109 * A109299 A216629 A337290 Adjacent sequences: A047998 A047999 A048000 * A048002 A048003 A048004 KEYWORD nonn AUTHOR Clark Kimberling STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 19:52 EST 2023. Contains 367693 sequences. (Running on oeis4.)