Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 08 2022 08:45:41
%S 4,9,9,32,24,32,150,100,100,150,864,540,480,540,864,5880,3528,2940,
%T 2940,3528,5880,46080,26880,21504,20160,21504,26880,46080,408240,
%U 233280,181440,163296,163296,181440,233280,408240,4032000,2268000,1728000,1512000,1451520,1512000,1728000,2268000,4032000
%N Triangle read by rows: T(n, k) = (n+1)!*(1/k + 1/(n-k+1)).
%C Row sums are (n+1)*A052517(n+2) = {4, 18, 88, 500, 3288, 24696, 209088, 1972512, 20531520, ...}.
%H G. C. Greubel, <a href="/A156047/b156047.txt">Rows n = 1..100 of triangle, flattened</a>
%F T(n, k) = (n+1)*(n+1)!/(k*(n-k+1)).
%F Sum_{k=1..n} T(n,k) = 2*(n+1)!*H(n), where H(n) is the harmonic number. - _G. C. Greubel_, Dec 02 2019
%e Triangle begins as:
%e 4;
%e 9, 9;
%e 32, 24, 32;
%e 150, 100, 100, 150;
%e 864, 540, 480, 540, 864;
%e 5880, 3528, 2940, 2940, 3528, 5880;
%e 46080, 26880, 21504, 20160, 21504, 26880, 46080;
%p seq(seq( (n+1)*(n+1)!/(k*(n-k+1)), k=1..n), n=1..10); # _G. C. Greubel_, Dec 02 2019
%t Table[(n+1)*(n+1)!/(k*(n-k+1)), {n,10}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Dec 02 2019 *)
%o (PARI) T(n,k) = (n+1)*(n+1)!/(k*(n-k+1)); \\ _G. C. Greubel_, Dec 02 2019
%o (Magma) [(n+1)*Factorial(n+1)/(k*(n-k+1)): k in [1..n], n in [1..10]]; // _G. C. Greubel_, Dec 02 2019
%o (Sage) [[(n+1)*factorial(n+1)/(k*(n-k+1)) for k in (1..n)] for n in (1..10)] # _G. C. Greubel_, Dec 02 2019
%o (GAP) Flat(List([1..10], n-> List([1..n], k-> (n+1)*Factorial(n+1)/(k*(n-k+1)) ))); # _G. C. Greubel_, Dec 02 2019
%Y Cf. A001008, A002805, A052517, A058298.
%K nonn,tabl,easy
%O 1,1
%A _Roger L. Bagula_, Feb 02 2009
%E Offset changed by _G. C. Greubel_, Dec 02 2019