login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154914
Triangle T(n,m,p,q) = (p^(n-k)*q^k + p^k*q^(n-k))*(StirlingS1(n, k) + StirlingS1(n, n-k)) with p=2 and q=3, read by rows.
5
4, 5, 5, 13, -24, 13, 35, -30, -30, 35, 97, -936, 1584, -936, 97, 275, 2940, -2700, -2700, 2940, 275, 793, -78570, 168012, -194400, 168012, -78570, 793, 2315, 1153350, -2002140, 960120, 960120, -2002140, 1153350, 2315, 6817, -24113544, 46757880, -42378336, 35090496, -42378336, 46757880, -24113544, 6817
OFFSET
0,1
FORMULA
T(n,m,p,q) = (p^(n-k)*q^k + p^k*q^(n-k))*(StirlingS1(n, k) + StirlingS1(n, n-k)) with p=2 and q=3.
Sum_{k=0..n} T(n,k,p,q) = 2*(-p)^n*Pochhammer(-q/p, n) + p^(n+1)*[n < 2], where p=2 and q=3. - G. C. Greubel, Mar 02 2021
EXAMPLE
Triangle begins as:
4;
5, 5;
13, -24, 13;
35, -30, -30, 35;
97, -936, 1584, -936, 97;
275, 2940, -2700, -2700, 2940, 275;
793, -78570, 168012, -194400, 168012, -78570, 793;
2315, 1153350, -2002140, 960120, 960120, -2002140, 1153350, 2315;
MAPLE
A154914:= (n, k, p, q) -> (p^(n-k)*q^k + p^k*q^(n-k))*(combinat[stirling1](n, k) + combinat[stirling1](n, n-k));
seq(seq(A154914(n, k, 2, 3), k=0..n), n=0..12); # G. C. Greubel, Mar 02 2021
MATHEMATICA
T[n_, k_, p_, q_]:= (p^(n-k)*q^k + p^k*q^(n-k))*(StirlingS1[n, k] + StirlingS1[n, n-k]);
Table[T[n, k, 2, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Mar 02 2021 *)
PROG
(Sage)
def A154914(n, k, p, q): return (p^(n-k)*q^k + p^k*q^(n-k))*(stirling_number1(n, k) + stirling_number1(n, n-k))
flatten([[A154914(n, k, 2, 3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 02 2021
(Magma)
A154914:= func< n, k, p, q | (p^(n-k)*q^k + p^k*q^(n-k))*(StirlingFirst(n, k) + StirlingFirst(n, n-k)) >;
[A154914(n, k, 2, 3): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 02 2021
CROSSREFS
Cf. A154913 (q=1), this sequence (q=3).
Sequence in context: A120132 A331263 A334018 * A154916 A344024 A327703
KEYWORD
tabl,sign,easy,less
AUTHOR
Roger L. Bagula, Jan 17 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 02 2021
STATUS
approved