The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A154913 A triangular sequence: p = 2; q = 1; t(n,m) = (p^(n - m)*q^m + p^m*q^( n - m))*(StirlingS1[n, m] + StirlingS1[n, n - m]). 0
 4, 3, 3, 5, -8, 5, 9, -6, -6, 9, 17, -120, 176, -120, 17, 33, 252, -180, -180, 252, 33, 65, -4590, 7180, -7200, 7180, -4590, 65, 129, 46134, -57204, 21336, 21336, -57204, 46134, 129, 257, -658840, 910520, -603680, 433216, -603680, 910520, -658840, 257 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Row sums are: {4, 6, 2, 6, -30, 210, -1890, 20790, -270270, 4054050, -68918850,..}. Fractal Plot: a = Table[Table[t[n, m], {m, 0, n}], {n, 0, 243}]; b = Table[If[m <= n, 3 - Mod[a[[n]][[m]], 3], 0], {m, 1, Length[a]}, {n, 1, Length[a]}]; ListDensityPlot[b, Mesh -> False, Frame -> False, AspectRatio -> Automatic, ColorFunction -> (Hue[2# ] &)] LINKS FORMULA p = 2; q = 1; t(n,m) = (p^(n - m)*q^m + p^m*q^(n - m))*(StirlingS1[n, m] + StirlingS1[n, n - m]). EXAMPLE {4}, {3, 3}, {5, -8, 5}, {9, -6, -6, 9}, {17, -120, 176, -120, 17}, {33, 252, -180, -180, 252, 33}, {65, -4590, 7180, -7200, 7180, -4590, 65}, {129, 46134, -57204, 21336, 21336, -57204, 46134, 129}, {257, -658840, 910520, -603680, 433216, -603680, 910520, -658840, 257}, {513, 10393272, -14393016, 8178336, -2152080, -2152080, 8178336, -14393016, 10393272, 513}, {1025, -186543450, 267135960, -160772400, 62956240, -34473600, 62956240, -160772400, 267135960, -186543450, 1025} MATHEMATICA Clear[t, p, q, n, m, a]; p = 2; q = 1; t[n_, m_] = (p^(n - m)*q^m + p^m*q^(n - m))*(StirlingS1[n, m] + StirlingS1[n, n - m]); Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A005589 A052360 A263046 * A154915 A238376 A237197 Adjacent sequences:  A154910 A154911 A154912 * A154914 A154915 A154916 KEYWORD uned,tabl,sign AUTHOR Roger L. Bagula, Jan 17 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 12:48 EST 2020. Contains 330958 sequences. (Running on oeis4.)