login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154603
Binomial transform of reduced tangent numbers (A002105).
2
1, 1, 2, 4, 11, 31, 110, 400, 1757, 7861, 41402, 220540, 1358183, 8405203, 59340710, 418689544, 3335855897, 26440317193, 234747589106, 2065458479476, 20224631361251, 195625329965671, 2094552876276830, 22092621409440256
OFFSET
0,3
COMMENTS
Hankel transform is A154604.
LINKS
FORMULA
G.f: 1/(1-x-x^2/(1-x-3x^2/(1-x-6x^2/(1-x-10x^2/(1-x-15x^2..... (continued fraction);
E.g.f.: exp(x)*(sec(x/sqrt(2))^2);
G.f.: 1/(x*Q(0)), where Q(k)= 1/x - 1 - (k+1)*(k+2)/2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 26 2013
G.f.: 1/Q(0), where Q(k)= 1 - x - 1/2*x^2*(k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 04 2013
a(n) ~ n! * 2^(2+n/2)*n*(exp(sqrt(2)*Pi)+(-1)^n) / (Pi^(n+2)*exp(Pi/sqrt(2))). - Vaclav Kotesovec, Oct 02 2013
G.f.: T(0)/(1-x), where T(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(1-x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 14 2013
a(n) = Sum_{k=0..n} binomial(n,k)*b(k), where b(n) = A002105((n+2)/2) if n mod 2 = 0 otherwise b(n) = 0. - G. C. Greubel, Sep 20 2024
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[x]Sec[x/Sqrt[2]]^2, {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, May 30 2013 *)
PROG
(Magma)
A002105:= func< n | (-1)^(n+1)*2^n*(4^n - 1)*Bernoulli(2*n)/n >;
b:= func< n | (n mod 2) eq 0 select A002105(Floor(n/2)+1) else 0 >;
A154603:= func< n | (&+[Binomial(n, k)*b(k): k in [0..n]]) >;
[A154603(n): n in [0..30]]; // G. C. Greubel, Sep 20 2024
(SageMath)
def A002105(n): return (-1)^(n+1)*2^n*(4^n -1)*bernoulli(2*n)/n
def b(n): return A002105(n//2 +1) if n%2==0 else 0
def A154603(n): return sum(binomial(n, k)*b(k) for k in range(n+1))
[A154603(n) for n in range(31)] # G. C. Greubel, Sep 20 2024
CROSSREFS
Sequence in context: A115625 A056323 A081557 * A063254 A280766 A123443
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jan 12 2009
EXTENSIONS
Typo in e.g.f. fixed by Vaclav Kotesovec, Oct 02 2013
STATUS
approved