login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154602
Exponential Riordan array [exp(sinh(x)*exp(x)), sinh(x)*exp(x)].
2
1, 1, 1, 3, 4, 1, 11, 19, 9, 1, 49, 104, 70, 16, 1, 257, 641, 550, 190, 25, 1, 1539, 4380, 4531, 2080, 425, 36, 1, 10299, 32803, 39515, 22491, 6265, 833, 49, 1, 75905, 266768, 365324, 247072, 87206, 16016, 1484, 64, 1, 609441, 2337505, 3575820, 2792476, 1192086, 281190, 36204, 2460, 81, 1
OFFSET
0,4
COMMENTS
Triangle T(n,k), read by rows, given by [1,2,1,4,1,6,1,8,1,10,1,12,1,...] DELTA [1,0,1,0,1,0,1,0,1,0,1,0,1,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 02 2009
FORMULA
T(n, 0) = A004211(n).
Sum_{k=0..n} T(n, k) = A055882(n) (row sums).
From Peter Bala, Jun 15 2009: (Start)
T(n,k) = Sum_{i = k..n} 2^(n-i)*binomial(i,k)*Stirling2(n,i).
E.g.f.: exp((t+1)/2*(exp(2*x)-1)) = 1 + (1+t)*x + (3+4*t+t^2)*x^2/2! + ....
Row generating polynomials R_n(x):
R_n(x) = 2^n*Bell(n,(x+1)/2), where Bell(n,x) = Sum_{k = 0..n} Stirling2(n, k)*x^k denotes the n-th Bell polynomial.
Recursion:
R(n+1,x) = (x+1)*(R_n(x) + 2*d/dx(R_n(x))).
(End)
Recurrence: T(n,k) = 2*(k+1)*T(n-1,k+1) + (2*k+1)*T(n-1,k) + T(n-1,k-1). - Emanuele Munarini, Apr 14 2020
Sum_{k=0..n} (-1)^k * T(n, k) = A000007(n). - G. C. Greubel, Sep 19 2024
EXAMPLE
Triangle begins
1;
1, 1;
3, 4, 1;
11, 19, 9, 1;
49, 104, 70, 16, 1;
257, 641, 550, 190, 25, 1;
1539, 4380, 4531, 2080, 425, 36, 1;
Production matrix of this array is
1, 1,
2, 3, 1,
0, 4, 5, 1,
0, 0, 6, 7, 1,
0, 0, 0, 8, 9, 1,
0, 0, 0, 0, 10, 11, 1
with generating function exp(t*x)*(1+t)*(1+2*x).
MAPLE
A154602 := (n, k) -> add(2^(n-j) * binomial(j, k) * Stirling2(n, j), j = k..n): for n from 0 to 6 do seq(A154602(n, k), k = 0..n) od; # Peter Luschny, Dec 13 2022
MATHEMATICA
(* The function RiordanArray is defined in A256893. *)
RiordanArray[Exp[Sinh[#] Exp[#]]&, Sinh[#] Exp[#]&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
PROG
(Magma)
A154602:= func< n, k | (&+[2^(n-j)*Binomial(j, k)*StirlingSecond(n, j): j in [k..n]]) >;
[A154602(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 19 2024
(SageMath)
def A154602(n, k): return sum(2^(n-j)*binomial(j, k)* stirling_number2(n, j) for j in range(k, n+1))
flatten([[A154602(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 19 2024
CROSSREFS
Cf. A004211 (first column), A256893.
Sums include: A000007 (alternating sign row), A055882 (row sums).
Sequence in context: A147721 A172094 A114608 * A216154 A325174 A109956
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jan 12 2009
STATUS
approved