login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154604
Hankel transform of reduced tangent numbers.
3
1, 1, 3, 54, 9720, 26244000, 1488034800000, 2362404048480000000, 135019896025206528000000000, 347259290825980971841536000000000000, 49121618545275670528799969525760000000000000000
OFFSET
0,3
COMMENTS
Hankel transform of A002105 (with interpolated zeros).
Hankel transform of A154603.
LINKS
Paul Barry, A Note on Three Families of Orthogonal Polynomials defined by Circular Functions, and Their Moment Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.7.2. - N. J. A. Sloane, Dec 27 2012
FORMULA
a(n) = Product_{k=1..n} C(k+1,2)^(n-k+1).
a(n) ~ n^(n^2 + 3*n + 7/3) * Pi^(n + 3/2) / (A^2 * 2^((n^2 - n - 3)/2) * exp(3*n^2/2 + 3*n - 1/6)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 13 2022
MATHEMATICA
Table[Product[(k*(k+1)/2)^(n - k + 1), {k, 1, n}], {n, 0, 12}] (* Vaclav Kotesovec, Nov 13 2022 *)
PROG
(PARI) a(n) = prod(k=1, n, binomial(k+1, 2)^(n-k+1)); \\ Michel Marcus, Nov 13 2022
(Magma) [n eq 0 select 1 else (&*[(Binomial(k+1, 2))^(n-k+1): k in [1..n]]): n in [0..15]]; // G. C. Greubel, May 30 2024
(SageMath) [product((binomial(k+1, 2))^(n-k+1) for k in range(1, n+1)) for n in range(16)] # G. C. Greubel, May 30 2024
CROSSREFS
Sequence in context: A157568 A156911 A214006 * A188798 A334248 A193256
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jan 12 2009
STATUS
approved