login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114608
Triangle read by rows: T(n,k) is the number of bicolored Dyck paths of semilength n and having k peaks of the form ud (0 <= k <= n). A bicolored Dyck path is a Dyck path in which each up-step is of two kinds: u and U.
1
1, 1, 1, 3, 4, 1, 11, 19, 9, 1, 45, 96, 66, 16, 1, 197, 501, 450, 170, 25, 1, 903, 2668, 2955, 1520, 365, 36, 1, 4279, 14407, 18963, 12355, 4165, 693, 49, 1, 20793, 78592, 119812, 94528, 41230, 9856, 1204, 64, 1, 103049, 432073, 748548, 693588, 372078, 117054
OFFSET
0,4
COMMENTS
Row sums yield A052701. Column 0 yields the little Schroeder numbers (A001003). Sum_{k=0..n} k*T(n,k) = A069720(n).
Triangle T(n,k), 0 <= k <= n, read by rows; given by [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 23 2005
FORMULA
T(n,k) = (1/n)*binomial(n,k)*Sum_{j=0..n-k} 2^j*binomial(n, j+1)*binomial(n-k, j) (k <= n-1); T(n, n)=1.
G.f. = G = G(t, z) satisfies G = 1 + z*(G-1+t)*G + z*G^2.
EXAMPLE
T(3,2)=9 because we have (ud)(ud)Ud, (ud)Ud(ud), Ud(ud)(ud), (ud)u(ud)d,
(ud)U(ud)d, u(ud)d(ud), U(ud)d(ud), u(ud)(ud)d and U(ud)(ud)d (the ud peaks are shown between parentheses).
Triangle starts:
1;
1, 1;
3, 4, 1;
11, 19, 9, 1;
45, 96, 66, 16, 1;
MAPLE
T:=proc(n, k) if k<=n-1 then (1/n)*binomial(n, k)*sum(2^j*binomial(n, j+1)*binomial(n-k, j), j=0..n-k) elif k=n then 1 else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
T[n_, k_] := If[k <= n-1, (1/n)*Binomial[n, k]*Sum[2^j*Binomial[n, j+1]* Binomial[n-k, j], {j, 0, n-k}], If[k == n, 1, 0]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 11 2018, from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Dec 15 2005
STATUS
approved