login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115625
Number of partitions of {1,...,n} into block sizes a power of 2.
4
1, 1, 2, 4, 11, 31, 106, 372, 1500, 6220, 28696, 136016, 702802, 3727946, 21253324, 124231096, 772458367, 4918962479, 33061095118, 227303570524, 1639389365201, 12082068856285, 92951844299150, 729991789222972, 5960617085224012, 49637008114202876
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(x+x^2/2+x^4/4!+x^8/8!+x^16/16!+...).
MAPLE
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i/2), j=0..n/i)))
end:
a:= n-> b(n, 2^ilog2(n)):
seq(a(n), n=0..30); # Alois P. Heinz, Sep 17 2015
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add((j->
a(n-j)*binomial(n-1, j-1))(2^i), i=0..ilog2(n)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Apr 21 2023
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n - i*j, i/2], {j, 0, n/i}]]]; a[n_] := b[n, 2^Floor[Log[2, n]]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 29 2015, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A110140 A190452 A275426 * A056323 A081557 A154603
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jan 26 2006
STATUS
approved