login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190452
E.g.f. exp(x+x^2/2+x^4/24).
3
1, 1, 2, 4, 11, 31, 106, 372, 1499, 6211, 28606, 135356, 697357, 3688049, 20935006, 121837276, 753159801, 4767863657, 31807384354, 217048147396, 1551200297291, 11327527814191, 86206555248122, 669666314150164, 5399592811359331, 44398500646885851
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(x+x^2/2+x^4/24).
a(n) = n!*sum(k=1..n, sum(j=floor((4*k-n)/3)..floor((4*k-n)/2), binomial(j,n-4*k+3*j)*12^(j-k)*binomial(k,j)*2^(-n+3*k-2*j))/k!), n>0, a(0)=1.
Recurrence: 6*a(n) = 6*a(n-1) + 6*(n-1)*a(n-2) + (n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Oct 09 2013
a(n) ~ 1/2*exp((6*n)^(1/4) + sqrt(6*n)/2 - 3*n/4 - 3/4) * n^(3*n/4) * 6^(-n/4) * (1 + 3^(5/4)/(16*(2*n)^(3/4)) + 7*sqrt(3/2)/(8*sqrt(n)) - 3^(3/4)/(2*(2*n)^(1/4))). - Vaclav Kotesovec, Oct 09 2013
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[x+x^2/2+x^4/24], {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Jun 21 2012 *)
PROG
(Maxima)
a(n):=n!*sum(sum(binomial(j, n-4*k+3*j)*12^(j-k)*binomial(k, j)*2^(-n+3*k-2*j), j, floor((4*k-n)/3), floor((4*k-n)/2))/k!, k, 1, n);
(PARI)
N=33; x='x+O('x^N);
egf=exp(x+x^2/2+x^4/4!);
Vec(serlaplace(egf))
/* Joerg Arndt, Sep 15 2012 */
CROSSREFS
Column k=4 of A275422.
Sequence in context: A004251 A148169 A110140 * A275426 A115625 A056323
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, May 24 2011
EXTENSIONS
More terms from Harvey P. Dale, Jun 21 2012
STATUS
approved