login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115626 Number of non-squashing partitions of {1,...,n}. 2
1, 1, 2, 4, 14, 26, 107, 190, 1234, 2182, 9947, 17414, 126953, 228398, 1039404, 1857419, 19047146, 35215110, 168364007, 307674658, 2378963269, 4429446046, 20237375204, 37371654467, 410117798653, 776233491226, 3797821367602 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A "non-squashing" partition of n is one where n=p_1+p_2+...+p_k with 1 <= p_1 <= p_2 <= ... <= p_k and p_1 + p_2 + ... + p_i <= p_{i+1} for all 1 <= i < k.

LINKS

Table of n, a(n) for n=0..26.

N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, arXiv:math/0312418 [math.CO], 2003.

N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.

FORMULA

a(n) = Sum_{i = 0..ceiling(n/2)-1} (binomial(n, i)*a(i)) + [if n is even] binomial(n, n/2)*(a(n/2)-1/2).

MATHEMATICA

a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n, i]*a[i], {i, 0, Ceiling[ n/2] - 1}] + If[EvenQ[n], Binomial[n, n/2] (a[n/2] - 1/2), 0];

Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Oct 10 2018 *)

CROSSREFS

Cf. A018819, A115625.

Sequence in context: A050564 A047830 A036051 * A116021 A288154 A283353

Adjacent sequences: A115623 A115624 A115625 * A115627 A115628 A115629

KEYWORD

nonn

AUTHOR

Christian G. Bower, Jan 26 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 07:00 EST 2022. Contains 358649 sequences. (Running on oeis4.)