login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115626 Number of non-squashing partitions of {1,...,n}. 2
1, 1, 2, 4, 14, 26, 107, 190, 1234, 2182, 9947, 17414, 126953, 228398, 1039404, 1857419, 19047146, 35215110, 168364007, 307674658, 2378963269, 4429446046, 20237375204, 37371654467, 410117798653, 776233491226, 3797821367602 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A "non-squashing" partition of n is one where n=p_1+p_2+...+p_k with 1 <= p_1 <= p_2 <= ... <= p_k and p_1 + p_2 + ... + p_i <= p_{i+1} for all 1 <= i < k.

LINKS

Table of n, a(n) for n=0..26.

N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, arXiv:math/0312418 [math.CO], 2003.

N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.

FORMULA

a(n) = Sum_{i = 0..ceiling(n/2)-1} (binomial(n, i)*a(i)) + [if n is even] binomial(n, n/2)*(a(n/2)-1/2).

MATHEMATICA

a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n, i]*a[i], {i, 0, Ceiling[ n/2] - 1}] + If[EvenQ[n], Binomial[n, n/2] (a[n/2] - 1/2), 0];

Table[a[n], {n, 0, 26}] (* Jean-Fran├žois Alcover, Oct 10 2018 *)

CROSSREFS

Cf. A018819, A115625.

Sequence in context: A050564 A047830 A036051 * A116021 A288154 A283353

Adjacent sequences:  A115623 A115624 A115625 * A115627 A115628 A115629

KEYWORD

nonn

AUTHOR

Christian G. Bower, Jan 26 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 22 07:17 EDT 2019. Contains 326172 sequences. (Running on oeis4.)