The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153973 a(n) = 3*a(n-1) - 2*a(n-2), with a(1) = 9, a(2) = 12. 5
 9, 12, 18, 30, 54, 102, 198, 390, 774, 1542, 3078, 6150, 12294, 24582, 49158, 98310, 196614, 393222, 786438, 1572870, 3145734, 6291462, 12582918, 25165830, 50331654, 100663302, 201326598, 402653190, 805306374, 1610612742, 3221225478 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (3,-2). FORMULA a(n) = 3*a(n-1) - 2*a(n-2), with a(1) = 9, a(2) = 12. - Harvey P. Dale, May 09 2012 From G. C. Greubel, Sep 01 2016: (Start) a(n) = (3/2)*(4 + 2^n). G.f.: 3*x*(3 - 5*x)/((1 - x)*(1 - 2*x)). E.g.f.: (3/2)*(-5 + 4*exp(x) + exp(2*x)). (End) MATHEMATICA a=9; lst={a}; Do[a=(a-2)*2-2; AppendTo[lst, a], {n, 6!}]; lst NestList[2#-6&, 9, 30] (* or *) LinearRecurrence[{3, -2}, {9, 12}, 31] Table[ (3/2)*(4 + 2^n), {n, 1, 25}] (* G. C. Greubel, Sep 01 2016 *) PROG (Magma) I:=[9, 12]; [n le 2 select I[n] else 3*Self(n-1)-2*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Sep 01 2016 CROSSREFS Cf. A146529, A153972 Sequence in context: A317720 A162822 A087269 * A072702 A357185 A366865 Adjacent sequences: A153970 A153971 A153972 * A153974 A153975 A153976 KEYWORD nonn AUTHOR Vladimir Joseph Stephan Orlovsky, Jan 03 2009 EXTENSIONS Definition adapted to offset by Georg Fischer, Jun 18 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 14:56 EDT 2024. Contains 373481 sequences. (Running on oeis4.)