The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072702 Last digit of F(n) is 4 where F(n) is the n-th Fibonacci number. 3
 9, 12, 18, 51, 69, 72, 78, 111, 129, 132, 138, 171, 189, 192, 198, 231, 249, 252, 258, 291, 309, 312, 318, 351, 369, 372, 378, 411, 429, 432, 438, 471, 489, 492, 498, 531, 549, 552, 558, 591, 609, 612, 618, 651, 669, 672, 678, 711, 729, 732, 738, 771, 789 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Sequence contains numbers of form (9+60k), (12+60k), (18+60k), (51+60k), with k>=0. LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). FORMULA G.f.: x*(9*x^4+33*x^3+6*x^2+3*x+9) / (x^5-x^4-x+1). - Colin Barker, Jun 16 2013 a(n) = (-60 + 6*(-1)^n + (9+21*i)*(-i)^n + (9-i*21)*i^n + 60*n) / 4 where i=sqrt(-1). - Colin Barker, Oct 16 2015 MATHEMATICA With[{fibs=Fibonacci[Range[800]]}, Flatten[Position[fibs, _?(Last[ IntegerDigits[ #]]==4&)]]] (* Harvey P. Dale, Sep 24 2012 *) PROG (PARI) a(n) = (-60 + 6*(-1)^n + (9+21*I)*(-I)^n + (9-I*21)*I^n + 60*n) / 4 \\ Colin Barker, Oct 16 2015 (PARI) Vec(x*(9*x^4+33*x^3+6*x^2+3*x+9)/(x^5-x^4-x+1) + O(x^100)) \\ Colin Barker, Oct 16 2015 (PARI) for(n=0, 1e3, if(fibonacci(n) % 10 == 4, print1(n", "))) \\ Altug Alkan, Oct 16 2015 CROSSREFS Cf. A000045, A003893. Sequence in context: A162822 A087269 A153973 * A157973 A057577 A328069 Adjacent sequences:  A072699 A072700 A072701 * A072703 A072704 A072705 KEYWORD nonn,base,easy AUTHOR Benoit Cloitre, Aug 07 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 08:07 EDT 2021. Contains 343940 sequences. (Running on oeis4.)