login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A366865
Largest elements of triples (a, b, c) with a > b > c > 0 such that ab+c, ac+b and bc+a are perfect squares.
1
9, 12, 19, 24, 28, 33, 40, 51, 52, 57, 60, 64, 72, 73, 84, 88, 89, 96, 99, 105, 108, 112, 116, 124, 129, 136, 144, 145, 148, 156, 163, 168, 169, 172, 177, 180, 184, 192, 193, 201, 204, 217, 220, 228, 231, 232, 240, 241, 243, 249, 260, 264, 268, 273, 276, 280, 288, 289, 291, 292, 295, 297, 304, 312, 313, 316, 324, 336, 337, 339, 345, 348, 352, 355, 364, 369, 372, 376, 385, 388, 393, 396, 408, 409, 420, 424, 432, 435, 441, 444, 448, 451, 456
OFFSET
1,1
LINKS
Wendy Appleby, Find all triples..., Number Theory group on LinkedIn.com, Oct 25 2023.
EXAMPLE
a(1) = 9 because {9,4,1} is the smallest 3-set {a,b,c} such that ab+c, ac+b and bc+a are squares, here: 9*7 + 1 = 64 and 9*1 + 7 = 16 = 7*1 + 9.
PROG
(PARI) is(a)=for(b=2, a-1, for(c = 1, b-1, issquare(a*b+c)&& issquare(a*c+b)&& issquare(b*c+a)&& return(1))
select(is, [1..456])
CROSSREFS
Cf. A000290 (the squares), A366861 (same with c = 1), A366862 (possible c-values).
Sequence in context: A153973 A072702 A357185 * A366861 A364343 A157973
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Oct 25 2023
STATUS
approved