OFFSET
1,1
COMMENTS
A positive integer n is a uniform relatively prime tree number iff either n = 1 or n is a prime number whose prime index is a uniform relatively prime tree number, or n is a power of a squarefree number whose prime indices are relatively prime and are themselves uniform relatively prime tree numbers. A prime index of n is a number m such that prime(m) divides n.
EXAMPLE
The sequence of non-uniform tree numbers together with their Matula-Goebel trees begins:
9: ((o)(o))
12: (oo(o))
18: (o(o)(o))
20: (oo((o)))
21: ((o)(oo))
23: (((o)(o)))
24: (ooo(o))
25: (((o))((o)))
27: ((o)(o)(o))
28: (oo(oo))
37: ((oo(o)))
39: ((o)(o(o)))
40: (ooo((o)))
44: (oo(((o))))
45: ((o)(o)((o)))
MATHEMATICA
rupQ[n_]:=Or[n==1, If[PrimeQ[n], rupQ[PrimePi[n]], And[SameQ@@FactorInteger[n][[All, 2]], GCD@@PrimePi/@FactorInteger[n][[All, 1]]==1, And@@rupQ/@PrimePi/@FactorInteger[n][[All, 1]]]]];
Select[Range[200], !rupQ[#]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 05 2018
STATUS
approved