login
A153796
6 times octagonal numbers: a(n) = 6*n*(3*n-2).
4
0, 6, 48, 126, 240, 390, 576, 798, 1056, 1350, 1680, 2046, 2448, 2886, 3360, 3870, 4416, 4998, 5616, 6270, 6960, 7686, 8448, 9246, 10080, 10950, 11856, 12798, 13776, 14790, 15840, 16926, 18048, 19206, 20400, 21630, 22896, 24198, 25536, 26910, 28320, 29766
OFFSET
0,2
FORMULA
a(n) = 18*n^2 - 12*n = 6*A000567(n) = 3*A139267(n) = 2*A152751(n).
a(n) = a(n-1) + 36*n - 30 (with a(0)=0). - Vincenzo Librandi, Dec 15 2010
From G. C. Greubel, Aug 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
G.f.: 6*x*(1 + 5*x)/(1 - x)^3.
E.g.f.: 6*x*(1 + 3*x)*exp(x). (End)
MAPLE
A153796:=n->6*n*(3*n-2): seq(A153796(n), n=0..60); # Wesley Ivan Hurt, Aug 29 2016
MATHEMATICA
s=0; lst={s}; Do[s+=n; AppendTo[lst, s], {n, 6, 8!, 36}]; lst (* Vladimir Joseph Stephan Orlovsky, Apr 03 2009 *)
Table[6*n*(3*n-2), {n, 0, 25}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 6, 48}, 25] (* G. C. Greubel, Aug 29 2016 *)
6*PolygonalNumber[8, Range[0, 50]] (* Harvey P. Dale, Dec 17 2023 *)
PROG
(Magma) [6*n*(3*n-2): n in [0..60]]; // Wesley Ivan Hurt, Aug 29 2016
(PARI) a(n)=6*n*(3*n-2) \\ Charles R Greathouse IV, Aug 29 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Jan 19 2009
STATUS
approved