OFFSET
0,2
LINKS
Ivan Panchenko, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = (39*n^2 - 13*n)/2 = 13*A000326(n).
a(n) = 39*n + a(n-1) - 26 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
G.f.: 13*x*(1 + 2*x)/(1-x)^3. - Colin Barker, Feb 14 2012
From G. C. Greubel, Aug 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
E.g.f.: (13/2)*x*(2+3*x)*exp(x). (End)
MAPLE
MATHEMATICA
Table[13*n*(3*n-1)/2, {n, 0, 25}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 13, 65}, 25] (* G. C. Greubel, Aug 29 2016 *)
13*PolygonalNumber[5, Range[0, 40]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 16 2016 *)
PROG
(PARI) a(n) = (39*n^2 - 13*n)/2; \\ Altug Alkan, Aug 29 2016
(Magma) [13*n*(3*n-1)/2: n in [0..60]]; // Wesley Ivan Hurt, Aug 29 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Jan 01 2009
STATUS
approved