The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153448 3 times 12-gonal (or dodecagonal) numbers: 3*n*(5*n-4). 12
0, 3, 36, 99, 192, 315, 468, 651, 864, 1107, 1380, 1683, 2016, 2379, 2772, 3195, 3648, 4131, 4644, 5187, 5760, 6363, 6996, 7659, 8352, 9075, 9828, 10611, 11424, 12267, 13140, 14043, 14976, 15939, 16932, 17955, 19008, 20091, 21204 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
This sequence is related to A172117 by 3*A172117(n) = n*a(n) - Sum_{i=0..n-1} a(i) and this is the case d=10 in the identity n*(3*n*(d*n - d + 2)/2) - Sum_{k=0..n-1} 3*k*(d*k - d + 2)/2 = n*(n+1)*(2*d*n - 2*d + 3)/2. - Bruno Berselli, Aug 26 2010
LINKS
B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
FORMULA
a(n) = 15*n^2 - 12*n = A051624(n)*3.
a(n) = 30*n + a(n-1) - 27 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 3*x*(1 + 9*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=3, a(2)=36. - Harvey P. Dale, Jun 18 2014
E.g.f.: 3*x*(1 + 5*x)*exp(x). - G. C. Greubel, Aug 21 2016
a(n) = (4*n-2)^2 - (n-2)^2. In general, if P(k,n) is the k-th n-gonal number, then (2*k+1)*P(8*k+4,n) = ((3k+1)*n-2*k)^2 - (k*n-2*k))^2. - Charlie Marion, Jul 29 2021
MATHEMATICA
Table[3n(5n-4), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 3, 36}, 40] (* Harvey P. Dale, Jun 18 2014 *)
3*PolygonalNumber[12, Range[0, 60]] (* Harvey P. Dale, May 13 2022 *)
PROG
(PARI) a(n)=3*n*(5*n-4) \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. numbers of the form n*(n*k-k+6))/2, this sequence is the case k=30: see Comments lines of A226492.
Sequence in context: A072682 A158207 A227032 * A325838 A140958 A156189
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Dec 26 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 08:50 EDT 2024. Contains 372926 sequences. (Running on oeis4.)