login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

3 times 12-gonal (or dodecagonal) numbers: a(n) = 3*n*(5*n-4).
12

%I #49 Oct 05 2024 09:39:29

%S 0,3,36,99,192,315,468,651,864,1107,1380,1683,2016,2379,2772,3195,

%T 3648,4131,4644,5187,5760,6363,6996,7659,8352,9075,9828,10611,11424,

%U 12267,13140,14043,14976,15939,16932,17955,19008,20091,21204

%N 3 times 12-gonal (or dodecagonal) numbers: a(n) = 3*n*(5*n-4).

%C This sequence is related to A172117 by 3*A172117(n) = n*a(n) - Sum_{i=0..n-1} a(i) and this is the case d=10 in the identity n*(3*n*(d*n - d + 2)/2) - Sum_{k=0..n-1} 3*k*(d*k - d + 2)/2 = n*(n+1)*(2*d*n - 2*d + 3)/2. - _Bruno Berselli_, Aug 26 2010

%H G. C. Greubel, <a href="/A153448/b153448.txt">Table of n, a(n) for n = 0..1000</a>

%H B. Berselli, A description of the recursive method in Comments lines: website <a href="http://www.lanostra-matematica.org/2008/12/sequenze-numeriche-e-procedimenti.html">Matem@ticamente</a> (in Italian).

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 15*n^2 - 12*n = A051624(n)*3.

%F a(n) = 30*n + a(n-1) - 27 with n>0, a(0)=0. - _Vincenzo Librandi_, Aug 03 2010

%F G.f.: 3*x*(1 + 9*x)/(1-x)^3. - _Bruno Berselli_, Jan 21 2011

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=3, a(2)=36. - _Harvey P. Dale_, Jun 18 2014

%F E.g.f.: 3*x*(1 + 5*x)*exp(x). - _G. C. Greubel_, Aug 21 2016

%F a(n) = (4*n-2)^2 - (n-2)^2. In general, if P(k,n) is the k-th n-gonal number, then (2*k+1)*P(8*k+4,n) = ((3k+1)*n-2*k)^2 - (k*n-2*k))^2. - _Charlie Marion_, Jul 29 2021

%t Table[3n(5n-4),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{0,3,36},40] (* _Harvey P. Dale_, Jun 18 2014 *)

%t 3*PolygonalNumber[12,Range[0,60]] (* _Harvey P. Dale_, May 13 2022 *)

%o (PARI) a(n)=3*n*(5*n-4) \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Cf. A051624, A152965.

%Y 3 times n-gonal numbers: A045943, A033428, A062741, A094159, A152773, A152751, A152759, A152767, A153783, A153875, A172117.

%Y Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=30: see Comments lines of A226492.

%K nonn,easy

%O 0,2

%A _Omar E. Pol_, Dec 26 2008